/**************************************************************************/ /*! @file usbd_host.c @author hathach (tinyusb.org) @section LICENSE Software License Agreement (BSD License) Copyright (c) 2013, hathach (tinyusb.org) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This file is part of the tinyusb stack. */ /**************************************************************************/ #include "common/tusb_common.h" #if MODE_HOST_SUPPORTED #define _TINY_USB_SOURCE_FILE_ #ifndef CFG_TUH_TASK_QUEUE_SZ #define CFG_TUH_TASK_QUEUE_SZ 16 #endif #ifndef CFG_TUH_TASK_STACK_SZ #define CFG_TUH_TASK_STACK_SZ 200 #endif #ifndef CFG_TUH_TASK_PRIO #define CFG_TUH_TASK_PRIO 0 #endif //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "tusb.h" #include "hub.h" #include "usbh_hcd.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ static host_class_driver_t const usbh_class_drivers[] = { #if HOST_CLASS_HID [TUSB_CLASS_HID] = { .init = hidh_init, .open_subtask = hidh_open_subtask, .isr = hidh_isr, .close = hidh_close }, #endif #if CFG_TUSB_HOST_CDC [TUSB_CLASS_CDC] = { .init = cdch_init, .open_subtask = cdch_open_subtask, .isr = cdch_isr, .close = cdch_close }, #endif #if CFG_TUSB_HOST_MSC [TUSB_CLASS_MSC] = { .init = msch_init, .open_subtask = msch_open_subtask, .isr = msch_isr, .close = msch_close }, #endif #if CFG_TUSB_HOST_HUB [TUSB_CLASS_HUB] = { .init = hub_init, .open_subtask = hub_open_subtask, .isr = hub_isr, .close = hub_close }, #endif #if CFG_TUSB_HOST_CUSTOM_CLASS [TUSB_CLASS_MAPPED_INDEX_END-1] = { .init = cush_init, .open_subtask = cush_open_subtask, .isr = cush_isr, .close = cush_close } #endif }; enum { USBH_CLASS_DRIVER_COUNT = sizeof(usbh_class_drivers) / sizeof(host_class_driver_t) }; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ CFG_TUSB_MEM_SECTION usbh_device_info_t usbh_devices[CFG_TUSB_HOST_DEVICE_MAX+1]; // including zero-address OSAL_TASK_DEF(_usbh_task_def, "usbh", usbh_task, CFG_TUH_TASK_PRIO, CFG_TUH_TASK_STACK_SZ); // Event queue // role device/host is used by OS NONE for mutex (disable usb isr) only OSAL_QUEUE_DEF(OPT_MODE_HOST, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, uint32_t); static osal_queue_t _usbh_q; CFG_TUSB_MEM_SECTION ATTR_ALIGNED(4) STATIC_VAR uint8_t enum_data_buffer[CFG_TUSB_HOST_ENUM_BUFFER_SIZE]; //------------- Reporter Task Data -------------// //------------- Helper Function Prototypes -------------// static inline uint8_t get_new_address(void) ATTR_ALWAYS_INLINE; static inline uint8_t get_configure_number_for_device(tusb_desc_device_t* dev_desc) ATTR_ALWAYS_INLINE; //--------------------------------------------------------------------+ // PUBLIC API (Parameter Verification is required) //--------------------------------------------------------------------+ tusb_device_state_t tuh_device_get_state (uint8_t const dev_addr) { TU_ASSERT( dev_addr <= CFG_TUSB_HOST_DEVICE_MAX, TUSB_DEVICE_STATE_INVALID_PARAMETER); return (tusb_device_state_t) usbh_devices[dev_addr].state; } uint32_t tuh_device_get_mounted_class_flag(uint8_t dev_addr) { return tuh_device_is_configured(dev_addr) ? usbh_devices[dev_addr].flag_supported_class : 0; } //--------------------------------------------------------------------+ // CLASS-USBD API (don't require to verify parameters) //--------------------------------------------------------------------+ bool usbh_init(void) { tu_memclr(usbh_devices, sizeof(usbh_device_info_t)*(CFG_TUSB_HOST_DEVICE_MAX+1)); //------------- Enumeration & Reporter Task init -------------// _usbh_q = osal_queue_create( &_usbh_qdef ); TU_ASSERT(_usbh_q != NULL); osal_task_create(&_usbh_task_def); //------------- Semaphore, Mutex for Control Pipe -------------// for(uint8_t i=0; icontrol.sem_hdl = osal_semaphore_create(&p_device->control.sem_def); TU_ASSERT(p_device->control.sem_hdl != NULL); p_device->control.mutex_hdl = osal_mutex_create(&p_device->control.mutex_def); TU_ASSERT(p_device->control.mutex_hdl != NULL); } //------------- class init -------------// for (uint8_t class_index = 1; class_index < USBH_CLASS_DRIVER_COUNT; class_index++) { if (usbh_class_drivers[class_index].init) { usbh_class_drivers[class_index].init(); } } TU_ASSERT( hcd_init() == TUSB_ERROR_NONE ); hcd_int_enable(TUH_OPT_RHPORT); return true; } //------------- USBH control transfer -------------// // function called within a task, requesting os blocking services, subtask input parameter must be static/global variables or constant tusb_error_t usbh_control_xfer_subtask(uint8_t dev_addr, uint8_t bmRequestType, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint16_t wLength, uint8_t* data) { // FIXME [CMSIS-RTX] use svc for OS API, error value changed after mutex release at the end of function static tusb_error_t error; // OSAL_SUBTASK_BEGIN error = osal_mutex_lock(usbh_devices[dev_addr].control.mutex_hdl, OSAL_TIMEOUT_NORMAL); TU_VERIFY_ERR_HDLR(error, osal_mutex_unlock(usbh_devices[dev_addr].control.mutex_hdl)); usbh_devices[dev_addr].control.request = (tusb_control_request_t) { {.bmRequestType = bmRequestType}, .bRequest = bRequest, .wValue = wValue, .wIndex = wIndex, .wLength = wLength }; usbh_devices[dev_addr].control.pipe_status = 0; error = hcd_pipe_control_xfer(dev_addr, &usbh_devices[dev_addr].control.request, data); if ( TUSB_ERROR_NONE == error ) error = osal_semaphore_wait(usbh_devices[dev_addr].control.sem_hdl, OSAL_TIMEOUT_NORMAL); osal_mutex_unlock(usbh_devices[dev_addr].control.mutex_hdl); TU_ASSERT_ERR(error); if (XFER_RESULT_STALLED == usbh_devices[dev_addr].control.pipe_status) return (TUSB_ERROR_USBH_XFER_STALLED); if (XFER_RESULT_FAILED == usbh_devices[dev_addr].control.pipe_status) return (TUSB_ERROR_USBH_XFER_FAILED); // STASK_ASSERT_HDLR(TUSB_ERROR_NONE == error && // XFER_RESULT_SUCCESS == usbh_devices[dev_addr].control.pipe_status, // tuh_device_mount_failed_cb(TUSB_ERROR_USBH_MOUNT_DEVICE_NOT_RESPOND, NULL) ); // OSAL_SUBTASK_END } tusb_error_t usbh_pipe_control_open(uint8_t dev_addr, uint8_t max_packet_size) { osal_semaphore_reset( usbh_devices[dev_addr].control.sem_hdl ); //osal_mutex_reset( usbh_devices[dev_addr].control.mutex_hdl ); TU_ASSERT_ERR( hcd_pipe_control_open(dev_addr, max_packet_size) ); return TUSB_ERROR_NONE; } static inline tusb_error_t usbh_pipe_control_close(uint8_t dev_addr) { TU_ASSERT_ERR( hcd_pipe_control_close(dev_addr) ); return TUSB_ERROR_NONE; } // TODO [USBH] unify pipe status get //tusb_interface_status_t usbh_pipe_status_get(pipe_handle_t pipe_hdl) //{ // return TUSB_INTERFACE_STATUS_BUSY; //} static inline uint8_t std_class_code_to_index(uint8_t std_class_code) { return (std_class_code <= TUSB_CLASS_AUDIO_VIDEO ) ? std_class_code : (std_class_code == TUSB_CLASS_DIAGNOSTIC ) ? TUSB_CLASS_MAPPED_INDEX_START : (std_class_code == TUSB_CLASS_WIRELESS_CONTROLLER ) ? TUSB_CLASS_MAPPED_INDEX_START + 1 : (std_class_code == TUSB_CLASS_MISC ) ? TUSB_CLASS_MAPPED_INDEX_START + 2 : (std_class_code == TUSB_CLASS_APPLICATION_SPECIFIC ) ? TUSB_CLASS_MAPPED_INDEX_START + 3 : (std_class_code == TUSB_CLASS_VENDOR_SPECIFIC ) ? TUSB_CLASS_MAPPED_INDEX_START + 4 : 0; } //--------------------------------------------------------------------+ // USBH-HCD ISR/Callback API //--------------------------------------------------------------------+ // interrupt caused by a TD (with IOC=1) in pipe of class class_code void usbh_xfer_isr(pipe_handle_t pipe_hdl, uint8_t class_code, xfer_result_t event, uint32_t xferred_bytes) { uint8_t class_index = std_class_code_to_index(class_code); if (TUSB_XFER_CONTROL == pipe_hdl.xfer_type) { usbh_devices[ pipe_hdl.dev_addr ].control.pipe_status = event; // usbh_devices[ pipe_hdl.dev_addr ].control.xferred_bytes = xferred_bytes; not yet neccessary osal_semaphore_post( usbh_devices[ pipe_hdl.dev_addr ].control.sem_hdl, true ); }else if (usbh_class_drivers[class_index].isr) { usbh_class_drivers[class_index].isr(pipe_hdl, event, xferred_bytes); }else { TU_ASSERT(false, ); // something wrong, no one claims the isr's source } } void usbh_hub_port_plugged_isr(uint8_t hub_addr, uint8_t hub_port) { usbh_enumerate_t enum_entry = { .core_id = usbh_devices[hub_addr].core_id, .hub_addr = hub_addr, .hub_port = hub_port }; osal_queue_send(_usbh_q, &enum_entry, true); } void usbh_hcd_rhport_plugged_isr(uint8_t hostid) { usbh_enumerate_t enum_entry = { .core_id = hostid, .hub_addr = 0, .hub_port = 0 }; osal_queue_send(_usbh_q, &enum_entry, true); } // a device unplugged on hostid, hub_addr, hub_port // return true if found and unmounted device, false if cannot find static void usbh_device_unplugged(uint8_t hostid, uint8_t hub_addr, uint8_t hub_port) { bool is_found = false; //------------- find the all devices (star-network) under port that is unplugged -------------// for (uint8_t dev_addr = 0; dev_addr <= CFG_TUSB_HOST_DEVICE_MAX; dev_addr ++) { if (usbh_devices[dev_addr].core_id == hostid && (hub_addr == 0 || usbh_devices[dev_addr].hub_addr == hub_addr) && // hub_addr == 0 & hub_port == 0 means roothub (hub_port == 0 || usbh_devices[dev_addr].hub_port == hub_port) && usbh_devices[dev_addr].state != TUSB_DEVICE_STATE_UNPLUG) { // TODO Hub multiple level for (uint8_t class_index = 1; class_index < USBH_CLASS_DRIVER_COUNT; class_index++) { if ((usbh_devices[dev_addr].flag_supported_class & BIT_(class_index)) && usbh_class_drivers[class_index].close) { usbh_class_drivers[class_index].close(dev_addr); } } // TODO refractor // set to REMOVING to allow HCD to clean up its cached data for this device // HCD must set this device's state to TUSB_DEVICE_STATE_UNPLUG when done usbh_devices[dev_addr].state = TUSB_DEVICE_STATE_REMOVING; usbh_devices[dev_addr].flag_supported_class = 0; usbh_pipe_control_close(dev_addr); is_found = true; } } if (is_found) hcd_port_unplug(usbh_devices[0].core_id); // TODO hack } void usbh_hcd_rhport_unplugged_isr(uint8_t hostid) { usbh_enumerate_t enum_entry = { .core_id = hostid, .hub_addr = 0, .hub_port = 0 }; osal_queue_send(_usbh_q, &enum_entry, true); } //--------------------------------------------------------------------+ // ENUMERATION TASK //--------------------------------------------------------------------+ tusb_error_t usbh_task_body(void) { enum { POWER_STABLE_DELAY = 500, RESET_DELAY = 200 // USB specs say only 50ms but many devices require much longer }; tusb_error_t error; usbh_enumerate_t enum_entry; // for OSAL_NONE local variable won't retain value after blocking service sem_wait/queue_recv static uint8_t new_addr; static uint8_t configure_selected = 1; // TODO move static uint8_t *p_desc = NULL; // TODO move if ( !osal_queue_receive(_usbh_q, &enum_entry) ) return TUSB_ERROR_NONE; usbh_devices[0].core_id = enum_entry.core_id; // TODO refractor integrate to device_pool usbh_devices[0].hub_addr = enum_entry.hub_addr; usbh_devices[0].hub_port = enum_entry.hub_port; usbh_devices[0].state = TUSB_DEVICE_STATE_UNPLUG; //------------- connected/disconnected directly with roothub -------------// if ( usbh_devices[0].hub_addr == 0) { if( hcd_port_connect_status(usbh_devices[0].core_id) ) { // connection event osal_task_delay(POWER_STABLE_DELAY); // wait until device is stable. Increase this if the first 8 bytes is failed to get // exit if device unplugged while delaying if ( !hcd_port_connect_status(usbh_devices[0].core_id) ) return TUSB_ERROR_NONE; hcd_port_reset( usbh_devices[0].core_id ); // port must be reset to have correct speed operation osal_task_delay(RESET_DELAY); usbh_devices[0].speed = hcd_port_speed_get( usbh_devices[0].core_id ); } else { // disconnection event usbh_device_unplugged(usbh_devices[0].core_id, 0, 0); return TUSB_ERROR_NONE; // restart task } } #if CFG_TUSB_HOST_HUB //------------- connected/disconnected via hub -------------// else { //------------- Get Port Status -------------// STASK_INVOKE( usbh_control_xfer_subtask( usbh_devices[0].hub_addr, bm_request_type(TUSB_DIR_IN, TUSB_REQ_TYPE_CLASS, TUSB_REQ_RCPT_OTHER), HUB_REQUEST_GET_STATUS, 0, usbh_devices[0].hub_port, 4, enum_data_buffer ), error ); // STASK_ASSERT_ERR( error ); STASK_ASSERT_ERR_HDLR(error, hub_status_pipe_queue( usbh_devices[0].hub_addr) ); // TODO hub refractor // Acknowledge Port Connection Change STASK_INVOKE( hub_port_clear_feature_subtask(usbh_devices[0].hub_addr, usbh_devices[0].hub_port, HUB_FEATURE_PORT_CONNECTION_CHANGE), error ); hub_port_status_response_t * p_port_status; p_port_status = ((hub_port_status_response_t *) enum_data_buffer); if ( ! p_port_status->status_change.connect_status ) STASK_RETURN(TUSB_ERROR_NONE); // only handle connection change if ( ! p_port_status->status_current.connect_status ) { // Disconnection event usbh_device_unplugged(usbh_devices[0].core_id, usbh_devices[0].hub_addr, usbh_devices[0].hub_port); (void) hub_status_pipe_queue( usbh_devices[0].hub_addr ); // done with hub, waiting for next data on status pipe STASK_RETURN(TUSB_ERROR_NONE); // restart task } else { // Connection Event STASK_INVOKE ( hub_port_reset_subtask(usbh_devices[0].hub_addr, usbh_devices[0].hub_port), error ); // STASK_ASSERT_ERR( error ); STASK_ASSERT_ERR_HDLR(error, hub_status_pipe_queue( usbh_devices[0].hub_addr) ); // TODO hub refractor usbh_devices[0].speed = hub_port_get_speed(); // Acknowledge Port Reset Change STASK_INVOKE( hub_port_clear_feature_subtask(usbh_devices[0].hub_addr, usbh_devices[0].hub_port, HUB_FEATURE_PORT_RESET_CHANGE), error ); } } #endif TU_ASSERT_ERR( usbh_pipe_control_open(0, 8) ); usbh_devices[0].state = TUSB_DEVICE_STATE_ADDRESSED; //------------- Get first 8 bytes of device descriptor to get Control Endpoint Size -------------// error = usbh_control_xfer_subtask( 0, bm_request_type(TUSB_DIR_IN, TUSB_REQ_TYPE_STANDARD, TUSB_REQ_RCPT_DEVICE), TUSB_REQ_GET_DESCRIPTOR, (TUSB_DESC_DEVICE << 8), 0, 8, enum_data_buffer ); //------------- Reset device again before Set Address -------------// if (usbh_devices[0].hub_addr == 0) { // connected directly to roothub TU_ASSERT_ERR(error); // TODO some slow device is observed to fail the very fist controller xfer, can try more times hcd_port_reset( usbh_devices[0].core_id ); // reset port after 8 byte descriptor osal_task_delay(RESET_DELAY); } #if CFG_TUSB_HOST_HUB else { // connected via a hub STASK_ASSERT_ERR_HDLR(error, hub_status_pipe_queue( usbh_devices[0].hub_addr) ); // TODO hub refractor STASK_INVOKE ( hub_port_reset_subtask(usbh_devices[0].hub_addr, usbh_devices[0].hub_port), error ); if ( TUSB_ERROR_NONE == error ) { // Acknowledge Port Reset Change if Reset Successful STASK_INVOKE( hub_port_clear_feature_subtask(usbh_devices[0].hub_addr, usbh_devices[0].hub_port, HUB_FEATURE_PORT_RESET_CHANGE), error ); } (void) hub_status_pipe_queue( usbh_devices[0].hub_addr ); // done with hub, waiting for next data on status pipe } #endif //------------- Set new address -------------// new_addr = get_new_address(); TU_ASSERT(new_addr <= CFG_TUSB_HOST_DEVICE_MAX); // TODO notify application we reach max devices error = usbh_control_xfer_subtask( 0, bm_request_type(TUSB_DIR_OUT, TUSB_REQ_TYPE_STANDARD, TUSB_REQ_RCPT_DEVICE), TUSB_REQ_SET_ADDRESS, new_addr, 0, 0, NULL ); TU_ASSERT_ERR(error); //------------- update port info & close control pipe of addr0 -------------// usbh_devices[new_addr].core_id = usbh_devices[0].core_id; usbh_devices[new_addr].hub_addr = usbh_devices[0].hub_addr; usbh_devices[new_addr].hub_port = usbh_devices[0].hub_port; usbh_devices[new_addr].speed = usbh_devices[0].speed; usbh_devices[new_addr].state = TUSB_DEVICE_STATE_ADDRESSED; usbh_pipe_control_close(0); usbh_devices[0].state = TUSB_DEVICE_STATE_UNPLUG; // open control pipe for new address TU_ASSERT_ERR ( usbh_pipe_control_open(new_addr, ((tusb_desc_device_t*) enum_data_buffer)->bMaxPacketSize0 ) ); //------------- Get full device descriptor -------------// error = usbh_control_xfer_subtask( new_addr, bm_request_type(TUSB_DIR_IN, TUSB_REQ_TYPE_STANDARD, TUSB_REQ_RCPT_DEVICE), TUSB_REQ_GET_DESCRIPTOR, (TUSB_DESC_DEVICE << 8), 0, 18, enum_data_buffer ); TU_ASSERT_ERR(error); // update device info TODO alignment issue usbh_devices[new_addr].vendor_id = ((tusb_desc_device_t*) enum_data_buffer)->idVendor; usbh_devices[new_addr].product_id = ((tusb_desc_device_t*) enum_data_buffer)->idProduct; usbh_devices[new_addr].configure_count = ((tusb_desc_device_t*) enum_data_buffer)->bNumConfigurations; configure_selected = get_configure_number_for_device((tusb_desc_device_t*) enum_data_buffer); TU_ASSERT(configure_selected <= usbh_devices[new_addr].configure_count); // TODO notify application when invalid configuration //------------- Get 9 bytes of configuration descriptor -------------// error = usbh_control_xfer_subtask( new_addr, bm_request_type(TUSB_DIR_IN, TUSB_REQ_TYPE_STANDARD, TUSB_REQ_RCPT_DEVICE), TUSB_REQ_GET_DESCRIPTOR, (TUSB_DESC_CONFIGURATION << 8) | (configure_selected - 1), 0, 9, enum_data_buffer ); TU_ASSERT_ERR(error); TU_VERIFY_HDLR( CFG_TUSB_HOST_ENUM_BUFFER_SIZE >= ((tusb_desc_configuration_t*)enum_data_buffer)->wTotalLength, tuh_device_mount_failed_cb(TUSB_ERROR_USBH_MOUNT_CONFIG_DESC_TOO_LONG, NULL) ); //------------- Get full configuration descriptor -------------// error = usbh_control_xfer_subtask( new_addr, bm_request_type(TUSB_DIR_IN, TUSB_REQ_TYPE_STANDARD, TUSB_REQ_RCPT_DEVICE), TUSB_REQ_GET_DESCRIPTOR, (TUSB_DESC_CONFIGURATION << 8) | (configure_selected - 1), 0, CFG_TUSB_HOST_ENUM_BUFFER_SIZE, enum_data_buffer ); TU_ASSERT_ERR(error); // update configuration info usbh_devices[new_addr].interface_count = ((tusb_desc_configuration_t*) enum_data_buffer)->bNumInterfaces; //------------- Set Configure -------------// error = usbh_control_xfer_subtask( new_addr, bm_request_type(TUSB_DIR_OUT, TUSB_REQ_TYPE_STANDARD, TUSB_REQ_RCPT_DEVICE), TUSB_REQ_SET_CONFIGURATION, configure_selected, 0, 0, NULL ); TU_ASSERT_ERR(error); usbh_devices[new_addr].state = TUSB_DEVICE_STATE_CONFIGURED; //------------- TODO Get String Descriptors -------------// //------------- parse configuration & install drivers -------------// p_desc = enum_data_buffer + sizeof(tusb_desc_configuration_t); // parse each interfaces while( p_desc < enum_data_buffer + ((tusb_desc_configuration_t*)enum_data_buffer)->wTotalLength ) { // skip until we see interface descriptor if ( TUSB_DESC_INTERFACE != p_desc[DESC_OFFSET_TYPE] ) { p_desc += p_desc[DESC_OFFSET_LEN]; // skip the descriptor, increase by the descriptor's length }else { static uint8_t class_index; // has to be static as it is used to call class's open_subtask class_index = std_class_code_to_index( ((tusb_desc_interface_t*) p_desc)->bInterfaceClass ); TU_ASSERT( class_index != 0 ); // class_index == 0 means corrupted data, abort enumeration if (usbh_class_drivers[class_index].open_subtask && !(class_index == TUSB_CLASS_HUB && usbh_devices[new_addr].hub_addr != 0)) { // supported class, TODO Hub disable multiple level static uint16_t length; length = 0; error = usbh_class_drivers[class_index].open_subtask( new_addr, (tusb_desc_interface_t*) p_desc, &length ); if (error == TUSB_ERROR_NONE) { TU_ASSERT( length >= sizeof(tusb_desc_interface_t) ); usbh_devices[new_addr].flag_supported_class |= BIT_(class_index); p_desc += length; }else // Interface open failed, for example a subclass is not supported { p_desc += p_desc[DESC_OFFSET_LEN]; // skip this interface, the rest will be skipped by the above loop } } else // unsupported class (not enable or yet implemented) { p_desc += p_desc[DESC_OFFSET_LEN]; // skip this interface, the rest will be skipped by the above loop } } } tuh_device_mount_succeed_cb(new_addr); } /* USB Host task * Thread that handles all device events. With an real RTOS, the task must be a forever loop and never return. * For coding convenience with no RTOS, we use wrapped sub-function for processing to easily return at any time. */ void usbh_task(void* param) { (void) param; #if CFG_TUSB_OS != OPT_OS_NONE while (1) { #endif usbh_task_body(); #if CFG_TUSB_OS != OPT_OS_NONE } #endif } //--------------------------------------------------------------------+ // REPORTER TASK & ITS DATA //--------------------------------------------------------------------+ //--------------------------------------------------------------------+ // INTERNAL HELPER //--------------------------------------------------------------------+ static inline uint8_t get_new_address(void) { uint8_t addr; for (addr=1; addr <= CFG_TUSB_HOST_DEVICE_MAX; addr++) { if (usbh_devices[addr].state == TUSB_DEVICE_STATE_UNPLUG) break; } return addr; } static inline uint8_t get_configure_number_for_device(tusb_desc_device_t* dev_desc) { uint8_t config_num = 1; // invoke callback to ask user which configuration to select if (tuh_device_attached_cb) { config_num = tu_min8(1, tuh_device_attached_cb(dev_desc) ); } return config_num; } #endif