/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" /* Since 2012 starting with LPC11uxx, NXP start to use common USB Device Controller with code name LPC IP3511 * for almost their new MCUs. Currently supported and tested families are * - LPC11U68, LPC11U37 * - LPC1347 * - LPC51U68 * - LPC54114 * - LPC55s69 * * For similar controller of other families, this file may require some minimal changes to work with. * Previous MCUs such as LPC17xx, LPC40xx, LPC18xx, LPC43xx have their own driver implementation. */ #if TUSB_OPT_DEVICE_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_LPC11UXX || \ CFG_TUSB_MCU == OPT_MCU_LPC13XX || \ CFG_TUSB_MCU == OPT_MCU_LPC15XX || \ CFG_TUSB_MCU == OPT_MCU_LPC51UXX || \ CFG_TUSB_MCU == OPT_MCU_LPC54XXX || \ CFG_TUSB_MCU == OPT_MCU_LPC55XX) #if CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13XX || CFG_TUSB_MCU == OPT_MCU_LPC15XX // LPC 11Uxx, 13xx, 15xx use lpcopen #include "chip.h" #define DCD_REGS LPC_USB #elif CFG_TUSB_MCU == OPT_MCU_LPC51UXX || CFG_TUSB_MCU == OPT_MCU_LPC54XXX || \ CFG_TUSB_MCU == OPT_MCU_LPC55XX // TODO 55xx has dual usb controllers #include "fsl_device_registers.h" #define DCD_REGS USB0 #endif #include "device/dcd.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ // Number of endpoints // - 11 13 15 51 54 has 5x2 endpoints // - 18/43 usb0 & 55s usb1 (HS) has 6x2 endpoints // - 18/43 usb1 & 55s usb0 (FS) has 4x2 endpoints #define EP_COUNT 10 // only SRAM1 & USB RAM can be used for transfer. // Used to set DATABUFSTART which is 22-bit aligned // 2000 0000 to 203F FFFF #define SRAM_REGION 0x20000000 /* Although device controller are the same. Somehow only LPC134x can execute * DMA with 1023 bytes for Bulk/Control. Others (11u, 51u, 54xxx) can only work * with max 64 bytes */ enum { #if CFG_TUSB_MCU == OPT_MCU_LPC13XX DMA_NBYTES_MAX = 1023 #else DMA_NBYTES_MAX = 64 #endif }; enum { INT_SOF_MASK = TU_BIT(30), INT_DEVICE_STATUS_MASK = TU_BIT(31) }; enum { CMDSTAT_DEVICE_ADDR_MASK = TU_BIT(7 )-1, CMDSTAT_DEVICE_ENABLE_MASK = TU_BIT(7 ), CMDSTAT_SETUP_RECEIVED_MASK = TU_BIT(8 ), CMDSTAT_DEVICE_CONNECT_MASK = TU_BIT(16), ///< reflect the soft-connect only, does not reflect the actual attached state CMDSTAT_DEVICE_SUSPEND_MASK = TU_BIT(17), CMDSTAT_CONNECT_CHANGE_MASK = TU_BIT(24), CMDSTAT_SUSPEND_CHANGE_MASK = TU_BIT(25), CMDSTAT_RESET_CHANGE_MASK = TU_BIT(26), CMDSTAT_VBUS_DEBOUNCED_MASK = TU_BIT(28), }; typedef struct TU_ATTR_PACKED { // Bits 21:6 (aligned 64) used in conjunction with bit 31:22 of DATABUFSTART volatile uint16_t buffer_offset; volatile uint16_t nbytes : 10 ; uint16_t is_iso : 1 ; uint16_t toggle_mode : 1 ; uint16_t toggle_reset : 1 ; uint16_t stall : 1 ; uint16_t disable : 1 ; volatile uint16_t active : 1 ; }ep_cmd_sts_t; TU_VERIFY_STATIC( sizeof(ep_cmd_sts_t) == 4, "size is not correct" ); typedef struct { uint16_t total_bytes; uint16_t xferred_bytes; uint16_t nbytes; }xfer_dma_t; // NOTE data will be transferred as soon as dcd get request by dcd_pipe(_queue)_xfer using double buffering. // current_td is used to keep track of number of remaining & xferred bytes of the current request. typedef struct { // 256 byte aligned, 2 for double buffer (not used) // Each cmd_sts can only transfer up to DMA_NBYTES_MAX bytes each ep_cmd_sts_t ep[EP_COUNT][2]; xfer_dma_t dma[EP_COUNT]; TU_ATTR_ALIGNED(64) uint8_t setup_packet[8]; }dcd_data_t; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ // EP list must be 256-byte aligned CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(256) static dcd_data_t _dcd; static inline uint16_t get_buf_offset(void const * buffer) { uint32_t addr = (uint32_t) buffer; TU_ASSERT( (addr & 0x3f) == 0, 0 ); return ( (addr >> 6) & 0xFFFFUL ) ; } static inline uint8_t ep_addr2id(uint8_t endpoint_addr) { return 2*(endpoint_addr & 0x0F) + ((endpoint_addr & TUSB_DIR_IN_MASK) ? 1 : 0); } //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ void dcd_init(uint8_t rhport) { (void) rhport; DCD_REGS->EPLISTSTART = (uint32_t) _dcd.ep; DCD_REGS->DATABUFSTART = SRAM_REGION; // 22-bit alignment DCD_REGS->INTSTAT = DCD_REGS->INTSTAT; // clear all pending interrupt DCD_REGS->INTEN = INT_DEVICE_STATUS_MASK; DCD_REGS->DEVCMDSTAT |= CMDSTAT_DEVICE_ENABLE_MASK | CMDSTAT_DEVICE_CONNECT_MASK | CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK; NVIC_ClearPendingIRQ(USB0_IRQn); } void dcd_int_enable(uint8_t rhport) { (void) rhport; NVIC_EnableIRQ(USB0_IRQn); } void dcd_int_disable(uint8_t rhport) { (void) rhport; NVIC_DisableIRQ(USB0_IRQn); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { // Response with status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); DCD_REGS->DEVCMDSTAT &= ~CMDSTAT_DEVICE_ADDR_MASK; DCD_REGS->DEVCMDSTAT |= dev_addr; } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } void dcd_connect(uint8_t rhport) { (void) rhport; DCD_REGS->DEVCMDSTAT |= CMDSTAT_DEVICE_CONNECT_MASK; } void dcd_disconnect(uint8_t rhport) { (void) rhport; DCD_REGS->DEVCMDSTAT &= ~CMDSTAT_DEVICE_CONNECT_MASK; } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; // TODO cannot able to STALL Control OUT endpoint !!!!! FIXME try some walk-around uint8_t const ep_id = ep_addr2id(ep_addr); _dcd.ep[ep_id][0].stall = 1; } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const ep_id = ep_addr2id(ep_addr); _dcd.ep[ep_id][0].stall = 0; _dcd.ep[ep_id][0].toggle_reset = 1; _dcd.ep[ep_id][0].toggle_mode = 0; } bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { (void) rhport; // TODO not support ISO yet if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) return false; //------------- Prepare Queue Head -------------// uint8_t ep_id = ep_addr2id(p_endpoint_desc->bEndpointAddress); // Check if endpoint is available TU_ASSERT( _dcd.ep[ep_id][0].disable && _dcd.ep[ep_id][1].disable ); tu_memclr(_dcd.ep[ep_id], 2*sizeof(ep_cmd_sts_t)); _dcd.ep[ep_id][0].is_iso = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS); // Enable EP interrupt DCD_REGS->INTEN |= TU_BIT(ep_id); return true; } static void prepare_ep_xfer(uint8_t ep_id, uint16_t buf_offset, uint16_t total_bytes) { uint16_t const nbytes = tu_min16(total_bytes, DMA_NBYTES_MAX); _dcd.dma[ep_id].nbytes = nbytes; _dcd.ep[ep_id][0].buffer_offset = buf_offset; _dcd.ep[ep_id][0].nbytes = nbytes; _dcd.ep[ep_id][0].active = 1; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { (void) rhport; uint8_t const ep_id = ep_addr2id(ep_addr); tu_varclr(&_dcd.dma[ep_id]); _dcd.dma[ep_id].total_bytes = total_bytes; prepare_ep_xfer(ep_id, get_buf_offset(buffer), total_bytes); return true; } //--------------------------------------------------------------------+ // IRQ //--------------------------------------------------------------------+ static void bus_reset(void) { tu_memclr(&_dcd, sizeof(dcd_data_t)); // disable all non-control endpoints on bus reset for(uint8_t ep_id = 2; ep_id < EP_COUNT; ep_id++) { _dcd.ep[ep_id][0].disable = _dcd.ep[ep_id][1].disable = 1; } _dcd.ep[0][1].buffer_offset = get_buf_offset(_dcd.setup_packet); DCD_REGS->EPINUSE = 0; DCD_REGS->EPBUFCFG = 0; DCD_REGS->EPSKIP = 0xFFFFFFFF; DCD_REGS->INTSTAT = DCD_REGS->INTSTAT; // clear all pending interrupt DCD_REGS->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; // clear setup received interrupt DCD_REGS->INTEN = INT_DEVICE_STATUS_MASK | TU_BIT(0) | TU_BIT(1); // enable device status & control endpoints } static void process_xfer_isr(uint32_t int_status) { for(uint8_t ep_id = 0; ep_id < EP_COUNT; ep_id++ ) { if ( tu_bit_test(int_status, ep_id) ) { ep_cmd_sts_t * ep_cs = &_dcd.ep[ep_id][0]; xfer_dma_t* xfer_dma = &_dcd.dma[ep_id]; xfer_dma->xferred_bytes += xfer_dma->nbytes - ep_cs->nbytes; if ( (ep_cs->nbytes == 0) && (xfer_dma->total_bytes > xfer_dma->xferred_bytes) ) { // There is more data to transfer // buff_offset has been already increased by hw to correct value for next transfer prepare_ep_xfer(ep_id, ep_cs->buffer_offset, xfer_dma->total_bytes - xfer_dma->xferred_bytes); } else { xfer_dma->total_bytes = xfer_dma->xferred_bytes; uint8_t const ep_addr = (ep_id / 2) | ((ep_id & 0x01) ? TUSB_DIR_IN_MASK : 0); // TODO no way determine if the transfer is failed or not dcd_event_xfer_complete(0, ep_addr, xfer_dma->xferred_bytes, XFER_RESULT_SUCCESS, true); } } } } void dcd_int_handler(uint8_t rhport) { (void) rhport; // TODO support multiple USB on supported mcu such as LPC55s69 uint32_t const cmd_stat = DCD_REGS->DEVCMDSTAT; uint32_t int_status = DCD_REGS->INTSTAT & DCD_REGS->INTEN; DCD_REGS->INTSTAT = int_status; // Acknowledge handled interrupt if (int_status == 0) return; //------------- Device Status -------------// if ( int_status & INT_DEVICE_STATUS_MASK ) { DCD_REGS->DEVCMDSTAT |= CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK; if ( cmd_stat & CMDSTAT_RESET_CHANGE_MASK) // bus reset { bus_reset(); dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true); } if (cmd_stat & CMDSTAT_CONNECT_CHANGE_MASK) { // device disconnect if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK) { // debouncing as this can be set when device is powering dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, true); } } // TODO support suspend & resume if (cmd_stat & CMDSTAT_SUSPEND_CHANGE_MASK) { if (cmd_stat & CMDSTAT_DEVICE_SUSPEND_MASK) { // suspend signal, bus idle for more than 3ms // Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration. if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK) { dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true); } } } // else // { // resume signal // dcd_event_bus_signal(0, DCD_EVENT_RESUME, true); // } // } } // Setup Receive if ( tu_bit_test(int_status, 0) && (cmd_stat & CMDSTAT_SETUP_RECEIVED_MASK) ) { // Follow UM flowchart to clear Active & Stall on both Control IN/OUT endpoints _dcd.ep[0][0].active = _dcd.ep[1][0].active = 0; _dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 0; DCD_REGS->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; dcd_event_setup_received(0, _dcd.setup_packet, true); // keep waiting for next setup _dcd.ep[0][1].buffer_offset = get_buf_offset(_dcd.setup_packet); // clear bit0 int_status = tu_bit_clear(int_status, 0); } // Endpoint transfer complete interrupt process_xfer_isr(int_status); } #endif