/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED #include "tusb.h" #include "usbd.h" #include "device/usbd_pvt.h" #include "dcd.h" #ifndef CFG_TUD_TASK_QUEUE_SZ #define CFG_TUD_TASK_QUEUE_SZ 16 #endif #ifndef CFG_TUD_EP_MAX #define CFG_TUD_EP_MAX 9 #endif //--------------------------------------------------------------------+ // Device Data //--------------------------------------------------------------------+ typedef struct { struct TU_ATTR_PACKED { volatile uint8_t connected : 1; volatile uint8_t addressed : 1; volatile uint8_t suspended : 1; uint8_t remote_wakeup_en : 1; // enable/disable by host uint8_t remote_wakeup_support : 1; // configuration descriptor's attribute uint8_t self_powered : 1; // configuration descriptor's attribute }; volatile uint8_t cfg_num; // current active configuration (0x00 is not configured) uint8_t speed; uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid) uint8_t ep2drv[CFG_TUD_EP_MAX][2]; // map endpoint to driver ( 0xff is invalid ) struct TU_ATTR_PACKED { volatile bool busy : 1; volatile bool stalled : 1; volatile bool claimed : 1; // TODO merge ep2drv here, 4-bit should be sufficient }ep_status[CFG_TUD_EP_MAX][2]; }usbd_device_t; static usbd_device_t _usbd_dev; // Invalid driver ID in itf2drv[] ep2drv[][] mapping enum { DRVID_INVALID = 0xFFu }; //--------------------------------------------------------------------+ // Class Driver //--------------------------------------------------------------------+ #if CFG_TUSB_DEBUG >= 2 #define DRIVER_NAME(_name) .name = _name, #else #define DRIVER_NAME(_name) #endif // Built-in class drivers static usbd_class_driver_t const _usbd_driver[] = { #if CFG_TUD_CDC { DRIVER_NAME("CDC") .init = cdcd_init, .reset = cdcd_reset, .open = cdcd_open, .control_xfer_cb = cdcd_control_xfer_cb, .xfer_cb = cdcd_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_MSC { DRIVER_NAME("MSC") .init = mscd_init, .reset = mscd_reset, .open = mscd_open, .control_xfer_cb = mscd_control_xfer_cb, .xfer_cb = mscd_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_HID { DRIVER_NAME("HID") .init = hidd_init, .reset = hidd_reset, .open = hidd_open, .control_xfer_cb = hidd_control_xfer_cb, .xfer_cb = hidd_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_AUDIO { DRIVER_NAME("AUDIO") .init = audiod_init, .reset = audiod_reset, .open = audiod_open, .control_xfer_cb = audiod_control_xfer_cb, .xfer_cb = audiod_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_MIDI { DRIVER_NAME("MIDI") .init = midid_init, .open = midid_open, .reset = midid_reset, .control_xfer_cb = midid_control_xfer_cb, .xfer_cb = midid_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_VENDOR { DRIVER_NAME("VENDOR") .init = vendord_init, .reset = vendord_reset, .open = vendord_open, .control_xfer_cb = tud_vendor_control_xfer_cb, .xfer_cb = vendord_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_USBTMC { DRIVER_NAME("TMC") .init = usbtmcd_init_cb, .reset = usbtmcd_reset_cb, .open = usbtmcd_open_cb, .control_xfer_cb = usbtmcd_control_xfer_cb, .xfer_cb = usbtmcd_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_DFU_RT { DRIVER_NAME("DFU-RT") .init = dfu_rtd_init, .reset = dfu_rtd_reset, .open = dfu_rtd_open, .control_xfer_cb = dfu_rtd_control_xfer_cb, .xfer_cb = dfu_rtd_xfer_cb, .sof = NULL }, #endif #if CFG_TUD_NET { DRIVER_NAME("NET") .init = netd_init, .reset = netd_reset, .open = netd_open, .control_xfer_cb = netd_control_xfer_cb, .xfer_cb = netd_xfer_cb, .sof = NULL, }, #endif #if CFG_TUD_BTH { DRIVER_NAME("BTH") .init = btd_init, .reset = btd_reset, .open = btd_open, .control_xfer_cb = btd_control_xfer_cb, .xfer_cb = btd_xfer_cb, .sof = NULL }, #endif }; enum { BUILTIN_DRIVER_COUNT = TU_ARRAY_SIZE(_usbd_driver) }; // Additional class drivers implemented by application static usbd_class_driver_t const * _app_driver = NULL; static uint8_t _app_driver_count = 0; // virtually joins built-in and application drivers together. // Application is positioned first to allow overwriting built-in ones. static inline usbd_class_driver_t const * get_driver(uint8_t drvid) { // Application drivers if ( usbd_app_driver_get_cb ) { if ( drvid < _app_driver_count ) return &_app_driver[drvid]; drvid -= _app_driver_count; } // Built-in drivers if (drvid < BUILTIN_DRIVER_COUNT) return &_usbd_driver[drvid]; return NULL; } #define TOTAL_DRIVER_COUNT (_app_driver_count + BUILTIN_DRIVER_COUNT) //--------------------------------------------------------------------+ // DCD Event //--------------------------------------------------------------------+ // Event queue // OPT_MODE_DEVICE is used by OS NONE for mutex (disable usb isr) OSAL_QUEUE_DEF(OPT_MODE_DEVICE, _usbd_qdef, CFG_TUD_TASK_QUEUE_SZ, dcd_event_t); static osal_queue_t _usbd_q; // Mutex for claiming endpoint, only needed when using with preempted RTOS #if CFG_TUSB_OS != OPT_OS_NONE static osal_mutex_def_t _ubsd_mutexdef; static osal_mutex_t _usbd_mutex; #endif //--------------------------------------------------------------------+ // Prototypes //--------------------------------------------------------------------+ static void mark_interface_endpoint(uint8_t ep2drv[][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id); static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request); static bool process_set_config(uint8_t rhport, uint8_t cfg_num); static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request); // from usbd_control.c void usbd_control_reset(void); void usbd_control_set_request(tusb_control_request_t const *request); void usbd_control_set_complete_callback( usbd_control_xfer_cb_t fp ); bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes); //--------------------------------------------------------------------+ // Debug //--------------------------------------------------------------------+ #if CFG_TUSB_DEBUG >= 2 static char const* const _usbd_event_str[DCD_EVENT_COUNT] = { "Invalid" , "Bus Reset" , "Unplugged" , "SOF" , "Suspend" , "Resume" , "Setup Received" , "Xfer Complete" , "Func Call" }; static char const* const _tusb_std_request_str[] = { "Get Status" , "Clear Feature" , "Reserved" , "Set Feature" , "Reserved" , "Set Address" , "Get Descriptor" , "Set Descriptor" , "Get Configuration" , "Set Configuration" , "Get Interface" , "Set Interface" , "Synch Frame" }; // for usbd_control to print the name of control complete driver void usbd_driver_print_control_complete_name(usbd_control_xfer_cb_t callback) { for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) { usbd_class_driver_t const * driver = get_driver(i); if ( driver->control_xfer_cb == callback ) { TU_LOG2(" %s control complete\r\n", driver->name); return; } } } #endif //--------------------------------------------------------------------+ // Application API //--------------------------------------------------------------------+ tusb_speed_t tud_speed_get(void) { return (tusb_speed_t) _usbd_dev.speed; } bool tud_connected(void) { return _usbd_dev.connected; } bool tud_mounted(void) { return _usbd_dev.cfg_num ? true : false; } bool tud_suspended(void) { return _usbd_dev.suspended; } bool tud_remote_wakeup(void) { // only wake up host if this feature is supported and enabled and we are suspended TU_VERIFY (_usbd_dev.suspended && _usbd_dev.remote_wakeup_support && _usbd_dev.remote_wakeup_en ); dcd_remote_wakeup(TUD_OPT_RHPORT); return true; } bool tud_disconnect(void) { TU_VERIFY(dcd_disconnect); dcd_disconnect(TUD_OPT_RHPORT); return true; } bool tud_connect(void) { TU_VERIFY(dcd_connect); dcd_connect(TUD_OPT_RHPORT); return true; } //--------------------------------------------------------------------+ // USBD Task //--------------------------------------------------------------------+ bool tud_init (void) { TU_LOG2("USBD init\r\n"); tu_varclr(&_usbd_dev); #if CFG_TUSB_OS != OPT_OS_NONE // Init device mutex _usbd_mutex = osal_mutex_create(&_ubsd_mutexdef); TU_ASSERT(_usbd_mutex); #endif // Init device queue & task _usbd_q = osal_queue_create(&_usbd_qdef); TU_ASSERT(_usbd_q); // Get application driver if available if ( usbd_app_driver_get_cb ) { _app_driver = usbd_app_driver_get_cb(&_app_driver_count); } // Init class drivers for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) { usbd_class_driver_t const * driver = get_driver(i); TU_LOG2("%s init\r\n", driver->name); driver->init(); } // Init device controller driver dcd_init(TUD_OPT_RHPORT); dcd_int_enable(TUD_OPT_RHPORT); return true; } static void usbd_reset(uint8_t rhport) { tu_varclr(&_usbd_dev); memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping usbd_control_reset(); for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ ) { get_driver(i)->reset(rhport); } } bool tud_task_event_ready(void) { // Skip if stack is not initialized if ( !tusb_inited() ) return false; return !osal_queue_empty(_usbd_q); } /* USB Device Driver task * This top level thread manages all device controller event and delegates events to class-specific drivers. * This should be called periodically within the mainloop or rtos thread. * @code int main(void) { application_init(); tusb_init(); while(1) // the mainloop { application_code(); tud_task(); // tinyusb device task } } @endcode */ void tud_task (void) { // Skip if stack is not initialized if ( !tusb_inited() ) return; // Loop until there is no more events in the queue while (1) { dcd_event_t event; if ( !osal_queue_receive(_usbd_q, &event) ) return; #if CFG_TUSB_DEBUG >= 2 if (event.event_id == DCD_EVENT_SETUP_RECEIVED) TU_LOG2("\r\n"); // extra line for setup TU_LOG2("USBD %s ", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED"); #endif switch ( event.event_id ) { case DCD_EVENT_BUS_RESET: TU_LOG2("\r\n"); usbd_reset(event.rhport); _usbd_dev.speed = event.bus_reset.speed; break; case DCD_EVENT_UNPLUGGED: TU_LOG2("\r\n"); usbd_reset(event.rhport); // invoke callback if (tud_umount_cb) tud_umount_cb(); break; case DCD_EVENT_SETUP_RECEIVED: TU_LOG2_VAR(&event.setup_received); TU_LOG2("\r\n"); // Mark as connected after receiving 1st setup packet. // But it is easier to set it every time instead of wasting time to check then set _usbd_dev.connected = 1; // Process control request if ( !process_control_request(event.rhport, &event.setup_received) ) { TU_LOG2(" Stall EP0\r\n"); // Failed -> stall both control endpoint IN and OUT dcd_edpt_stall(event.rhport, 0); dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK); } break; case DCD_EVENT_XFER_COMPLETE: { // Invoke the class callback associated with the endpoint address uint8_t const ep_addr = event.xfer_complete.ep_addr; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const ep_dir = tu_edpt_dir(ep_addr); TU_LOG2("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len); _usbd_dev.ep_status[epnum][ep_dir].busy = false; _usbd_dev.ep_status[epnum][ep_dir].claimed = 0; if ( 0 == epnum ) { usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t)event.xfer_complete.result, event.xfer_complete.len); } else { usbd_class_driver_t const * driver = get_driver( _usbd_dev.ep2drv[epnum][ep_dir] ); TU_ASSERT(driver, ); TU_LOG2(" %s xfer callback\r\n", driver->name); driver->xfer_cb(event.rhport, ep_addr, (xfer_result_t)event.xfer_complete.result, event.xfer_complete.len); } } break; case DCD_EVENT_SUSPEND: TU_LOG2("\r\n"); if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en); break; case DCD_EVENT_RESUME: TU_LOG2("\r\n"); if (tud_resume_cb) tud_resume_cb(); break; case DCD_EVENT_SOF: TU_LOG2("\r\n"); for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ ) { usbd_class_driver_t const * driver = get_driver(i); if ( driver->sof ) driver->sof(event.rhport); } break; case USBD_EVENT_FUNC_CALL: TU_LOG2("\r\n"); if ( event.func_call.func ) event.func_call.func(event.func_call.param); break; default: TU_BREAKPOINT(); break; } } } //--------------------------------------------------------------------+ // Control Request Parser & Handling //--------------------------------------------------------------------+ // Helper to invoke class driver control request handler static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request) { usbd_control_set_complete_callback(driver->control_xfer_cb); TU_LOG2(" %s control request\r\n", driver->name); return driver->control_xfer_cb(rhport, CONTROL_STAGE_SETUP, request); } // This handles the actual request and its response. // return false will cause its caller to stall control endpoint static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request) { usbd_control_set_complete_callback(NULL); TU_ASSERT(p_request->bmRequestType_bit.type < TUSB_REQ_TYPE_INVALID); // Vendor request if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR ) { TU_VERIFY(tud_vendor_control_xfer_cb); usbd_control_set_complete_callback(tud_vendor_control_xfer_cb); return tud_vendor_control_xfer_cb(rhport, CONTROL_STAGE_SETUP, p_request); } #if CFG_TUSB_DEBUG >= 2 if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME) { TU_LOG2(" %s", _tusb_std_request_str[p_request->bRequest]); if (TUSB_REQ_GET_DESCRIPTOR != p_request->bRequest) TU_LOG2("\r\n"); } #endif switch ( p_request->bmRequestType_bit.recipient ) { //------------- Device Requests e.g in enumeration -------------// case TUSB_REQ_RCPT_DEVICE: if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type ) { uint8_t const itf = tu_u16_low(p_request->wIndex); TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv)); usbd_class_driver_t const * driver = get_driver(_usbd_dev.itf2drv[itf]); TU_VERIFY(driver); // forward to class driver: "non-STD request to Interface" return invoke_class_control(rhport, driver, p_request); } if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) { // Non standard request is not supported TU_BREAKPOINT(); return false; } switch ( p_request->bRequest ) { case TUSB_REQ_SET_ADDRESS: // Depending on mcu, status phase could be sent either before or after changing device address, // or even require stack to not response with status at all // Therefore DCD must take full responsibility to response and include zlp status packet if needed. usbd_control_set_request(p_request); // set request since DCD has no access to tud_control_status() API dcd_set_address(rhport, (uint8_t) p_request->wValue); // skip tud_control_status() _usbd_dev.addressed = 1; break; case TUSB_REQ_GET_CONFIGURATION: { uint8_t cfg_num = _usbd_dev.cfg_num; tud_control_xfer(rhport, p_request, &cfg_num, 1); } break; case TUSB_REQ_SET_CONFIGURATION: { uint8_t const cfg_num = (uint8_t) p_request->wValue; if ( !_usbd_dev.cfg_num && cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) ); _usbd_dev.cfg_num = cfg_num; tud_control_status(rhport, p_request); } break; case TUSB_REQ_GET_DESCRIPTOR: TU_VERIFY( process_get_descriptor(rhport, p_request) ); break; case TUSB_REQ_SET_FEATURE: // Only support remote wakeup for device feature TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue); // Host may enable remote wake up before suspending especially HID device _usbd_dev.remote_wakeup_en = true; tud_control_status(rhport, p_request); break; case TUSB_REQ_CLEAR_FEATURE: // Only support remote wakeup for device feature TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue); // Host may disable remote wake up after resuming _usbd_dev.remote_wakeup_en = false; tud_control_status(rhport, p_request); break; case TUSB_REQ_GET_STATUS: { // Device status bit mask // - Bit 0: Self Powered // - Bit 1: Remote Wakeup enabled uint16_t status = (_usbd_dev.self_powered ? 1 : 0) | (_usbd_dev.remote_wakeup_en ? 2 : 0); tud_control_xfer(rhport, p_request, &status, 2); } break; // Unknown/Unsupported request default: TU_BREAKPOINT(); return false; } break; //------------- Class/Interface Specific Request -------------// case TUSB_REQ_RCPT_INTERFACE: { uint8_t const itf = tu_u16_low(p_request->wIndex); TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv)); usbd_class_driver_t const * driver = get_driver(_usbd_dev.itf2drv[itf]); TU_VERIFY(driver); // all requests to Interface (STD or Class) is forwarded to class driver. // notable requests are: GET HID REPORT DESCRIPTOR, SET_INTERFACE, GET_INTERFACE if ( !invoke_class_control(rhport, driver, p_request) ) { // For GET_INTERFACE, it is mandatory to respond even if the class // driver doesn't use alternate settings. TU_VERIFY( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && TUSB_REQ_GET_INTERFACE == p_request->bRequest); uint8_t alternate = 0; tud_control_xfer(rhport, p_request, &alternate, 1); } } break; //------------- Endpoint Request -------------// case TUSB_REQ_RCPT_ENDPOINT: { uint8_t const ep_addr = tu_u16_low(p_request->wIndex); uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const ep_dir = tu_edpt_dir(ep_addr); TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) ); bool ret = false; // Handle STD request to endpoint if ( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type ) { // force return true for standard request ret = true; switch ( p_request->bRequest ) { case TUSB_REQ_GET_STATUS: { uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000; tud_control_xfer(rhport, p_request, &status, 2); } break; case TUSB_REQ_CLEAR_FEATURE: if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue ) usbd_edpt_clear_stall(rhport, ep_addr); tud_control_status(rhport, p_request); break; case TUSB_REQ_SET_FEATURE: if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue ) usbd_edpt_stall(rhport, ep_addr); tud_control_status(rhport, p_request); break; // Unknown/Unsupported request default: TU_BREAKPOINT(); return false; } } usbd_class_driver_t const * driver = get_driver(_usbd_dev.ep2drv[ep_num][ep_dir]); if (driver) { // Some classes such as USBTMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request // We will forward all request targeted endpoint to class drivers after // - For class-type requests: driver is fully responsible to reply to host // - For std-type requests : driver init/re-init internal variable/buffer only, and // must not call tud_control_status(), driver's return value will have no effect. // EP state has already affected (stalled/cleared) if ( invoke_class_control(rhport, driver, p_request) ) ret = true; } if ( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type ) { // Set complete callback = NULL since it can also stall the request. usbd_control_set_complete_callback(NULL); } return ret; } break; // Unknown recipient default: TU_BREAKPOINT(); return false; } return true; } // Process Set Configure Request // This function parse configuration descriptor & open drivers accordingly static bool process_set_config(uint8_t rhport, uint8_t cfg_num) { tusb_desc_configuration_t const * desc_cfg = (tusb_desc_configuration_t const *) tud_descriptor_configuration_cb(cfg_num-1); // index is cfg_num-1 TU_ASSERT(desc_cfg != NULL && desc_cfg->bDescriptorType == TUSB_DESC_CONFIGURATION); // Parse configuration descriptor _usbd_dev.remote_wakeup_support = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP) ? 1 : 0; _usbd_dev.self_powered = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_SELF_POWERED) ? 1 : 0; // Parse interface descriptor uint8_t const * p_desc = ((uint8_t const*) desc_cfg) + sizeof(tusb_desc_configuration_t); uint8_t const * desc_end = ((uint8_t const*) desc_cfg) + desc_cfg->wTotalLength; while( p_desc < desc_end ) { tusb_desc_interface_assoc_t const * desc_itf_assoc = NULL; // Class will always starts with Interface Association (if any) and then Interface descriptor if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) { desc_itf_assoc = (tusb_desc_interface_assoc_t const *) p_desc; p_desc = tu_desc_next(p_desc); // next to Interface } TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) ); tusb_desc_interface_t const * desc_itf = (tusb_desc_interface_t const*) p_desc; uint16_t const remaining_len = desc_end-p_desc; uint8_t drv_id; for (drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) { usbd_class_driver_t const *driver = get_driver(drv_id); uint16_t const drv_len = driver->open(rhport, desc_itf, remaining_len); if ( drv_len > 0 ) { // Open successfully, check if length is correct TU_ASSERT( sizeof(tusb_desc_interface_t) <= drv_len && drv_len <= remaining_len); // Interface number must not be used already TU_ASSERT(DRVID_INVALID == _usbd_dev.itf2drv[desc_itf->bInterfaceNumber]); TU_LOG2(" %s opened\r\n", driver->name); _usbd_dev.itf2drv[desc_itf->bInterfaceNumber] = drv_id; // If IAD exist, assign all interfaces to the same driver if (desc_itf_assoc) { // IAD's first interface number and class should match with opened interface TU_ASSERT(desc_itf_assoc->bFirstInterface == desc_itf->bInterfaceNumber && desc_itf_assoc->bFunctionClass == desc_itf->bInterfaceClass); for(uint8_t i=1; ibInterfaceCount; i++) { _usbd_dev.itf2drv[desc_itf->bInterfaceNumber+i] = drv_id; } } mark_interface_endpoint(_usbd_dev.ep2drv, p_desc, drv_len, drv_id); // TODO refactor p_desc += drv_len; // next interface break; } } // Failed if cannot find supported driver TU_ASSERT(drv_id < TOTAL_DRIVER_COUNT); } // invoke callback if (tud_mount_cb) tud_mount_cb(); return true; } // Helper marking endpoint of interface belongs to class driver static void mark_interface_endpoint(uint8_t ep2drv[][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id) { uint16_t len = 0; while( len < desc_len ) { if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) ) { uint8_t const ep_addr = ((tusb_desc_endpoint_t const*) p_desc)->bEndpointAddress; ep2drv[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)] = driver_id; } len = (uint16_t)(len + tu_desc_len(p_desc)); p_desc = tu_desc_next(p_desc); } } // return descriptor's buffer and update desc_len static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request) { tusb_desc_type_t const desc_type = (tusb_desc_type_t) tu_u16_high(p_request->wValue); uint8_t const desc_index = tu_u16_low( p_request->wValue ); switch(desc_type) { case TUSB_DESC_DEVICE: { TU_LOG2(" Device\r\n"); uint16_t len = sizeof(tusb_desc_device_t); // Only send up to EP0 Packet Size if not addressed // This only happens with the very first get device descriptor and EP0 size = 8 or 16. if ((CFG_TUD_ENDPOINT0_SIZE < sizeof(tusb_desc_device_t)) && !_usbd_dev.addressed) { len = CFG_TUD_ENDPOINT0_SIZE; // Hack here: we modify the request length to prevent usbd_control response with zlp ((tusb_control_request_t*) p_request)->wLength = CFG_TUD_ENDPOINT0_SIZE; } return tud_control_xfer(rhport, p_request, (void*) tud_descriptor_device_cb(), len); } break; case TUSB_DESC_BOS: { TU_LOG2(" BOS\r\n"); // requested by host if USB > 2.0 ( i.e 2.1 or 3.x ) if (!tud_descriptor_bos_cb) return false; tusb_desc_bos_t const* desc_bos = (tusb_desc_bos_t const*) tud_descriptor_bos_cb(); uint16_t total_len; // Use offsetof to avoid pointer to the odd/misaligned address memcpy(&total_len, (uint8_t*) desc_bos + offsetof(tusb_desc_bos_t, wTotalLength), 2); return tud_control_xfer(rhport, p_request, (void*) desc_bos, total_len); } break; case TUSB_DESC_CONFIGURATION: { TU_LOG2(" Configuration[%u]\r\n", desc_index); tusb_desc_configuration_t const* desc_config = (tusb_desc_configuration_t const*) tud_descriptor_configuration_cb(desc_index); TU_ASSERT(desc_config); uint16_t total_len; // Use offsetof to avoid pointer to the odd/misaligned address memcpy(&total_len, (uint8_t*) desc_config + offsetof(tusb_desc_configuration_t, wTotalLength), 2); return tud_control_xfer(rhport, p_request, (void*) desc_config, total_len); } break; case TUSB_DESC_STRING: { TU_LOG2(" String[%u]\r\n", desc_index); // String Descriptor always uses the desc set from user uint8_t const* desc_str = (uint8_t const*) tud_descriptor_string_cb(desc_index, p_request->wIndex); TU_VERIFY(desc_str); // first byte of descriptor is its size return tud_control_xfer(rhport, p_request, (void*) desc_str, desc_str[0]); } break; case TUSB_DESC_DEVICE_QUALIFIER: TU_LOG2(" Device Qualifier\r\n"); // Host sends this request to ask why our device with USB BCD from 2.0 // but is running at Full/Low Speed. If not highspeed capable stall this request, // otherwise return the descriptor that could work in highspeed mode if ( tud_descriptor_device_qualifier_cb ) { uint8_t const* desc_qualifier = tud_descriptor_device_qualifier_cb(); TU_ASSERT(desc_qualifier); // first byte of descriptor is its size return tud_control_xfer(rhport, p_request, (void*) desc_qualifier, desc_qualifier[0]); }else { return false; } break; case TUSB_DESC_OTHER_SPEED_CONFIG: TU_LOG2(" Other Speed Configuration\r\n"); // After Device Qualifier descriptor is received host will ask for this descriptor return false; // not supported break; default: return false; } } //--------------------------------------------------------------------+ // DCD Event Handler //--------------------------------------------------------------------+ void dcd_event_handler(dcd_event_t const * event, bool in_isr) { switch (event->event_id) { case DCD_EVENT_UNPLUGGED: _usbd_dev.connected = 0; _usbd_dev.addressed = 0; _usbd_dev.cfg_num = 0; _usbd_dev.suspended = 0; osal_queue_send(_usbd_q, event, in_isr); break; case DCD_EVENT_SOF: return; // skip SOF event for now break; case DCD_EVENT_SUSPEND: // NOTE: When plugging/unplugging device, the D+/D- state are unstable and can accidentally meet the // SUSPEND condition ( Idle for 3ms ). Some MCUs such as SAMD doesn't distinguish suspend vs disconnect as well. // We will skip handling SUSPEND/RESUME event if not currently connected if ( _usbd_dev.connected ) { _usbd_dev.suspended = 1; osal_queue_send(_usbd_q, event, in_isr); } break; case DCD_EVENT_RESUME: // skip event if not connected (especially required for SAMD) if ( _usbd_dev.connected ) { _usbd_dev.suspended = 0; osal_queue_send(_usbd_q, event, in_isr); } break; default: osal_queue_send(_usbd_q, event, in_isr); break; } } void dcd_event_bus_signal (uint8_t rhport, dcd_eventid_t eid, bool in_isr) { dcd_event_t event = { .rhport = rhport, .event_id = eid }; dcd_event_handler(&event, in_isr); } void dcd_event_bus_reset (uint8_t rhport, tusb_speed_t speed, bool in_isr) { dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_BUS_RESET }; event.bus_reset.speed = speed; dcd_event_handler(&event, in_isr); } void dcd_event_setup_received(uint8_t rhport, uint8_t const * setup, bool in_isr) { dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_SETUP_RECEIVED }; memcpy(&event.setup_received, setup, 8); dcd_event_handler(&event, in_isr); } void dcd_event_xfer_complete (uint8_t rhport, uint8_t ep_addr, uint32_t xferred_bytes, uint8_t result, bool in_isr) { dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_XFER_COMPLETE }; event.xfer_complete.ep_addr = ep_addr; event.xfer_complete.len = xferred_bytes; event.xfer_complete.result = result; dcd_event_handler(&event, in_isr); } //--------------------------------------------------------------------+ // Helper //--------------------------------------------------------------------+ // Parse consecutive endpoint descriptors (IN & OUT) bool usbd_open_edpt_pair(uint8_t rhport, uint8_t const* p_desc, uint8_t ep_count, uint8_t xfer_type, uint8_t* ep_out, uint8_t* ep_in) { for(int i=0; ibDescriptorType && xfer_type == desc_ep->bmAttributes.xfer); TU_ASSERT(usbd_edpt_open(rhport, desc_ep)); if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN ) { (*ep_in) = desc_ep->bEndpointAddress; }else { (*ep_out) = desc_ep->bEndpointAddress; } p_desc = tu_desc_next(p_desc); } return true; } // Helper to defer an isr function void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr) { dcd_event_t event = { .rhport = 0, .event_id = USBD_EVENT_FUNC_CALL, }; event.func_call.func = func; event.func_call.param = param; dcd_event_handler(&event, in_isr); } //--------------------------------------------------------------------+ // USBD Endpoint API //--------------------------------------------------------------------+ bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep) { TU_LOG2(" Open EP %02X with Size = %u\r\n", desc_ep->bEndpointAddress, desc_ep->wMaxPacketSize.size); return dcd_edpt_open(rhport, desc_ep); } bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); #if CFG_TUSB_OS != OPT_OS_NONE // pre-check to help reducing mutex lock TU_VERIFY((_usbd_dev.ep_status[epnum][dir].busy == 0) && (_usbd_dev.ep_status[epnum][dir].claimed == 0)); osal_mutex_lock(_usbd_mutex, OSAL_TIMEOUT_WAIT_FOREVER); #endif // can only claim the endpoint if it is not busy and not claimed yet. bool const ret = (_usbd_dev.ep_status[epnum][dir].busy == 0) && (_usbd_dev.ep_status[epnum][dir].claimed == 0); if (ret) { _usbd_dev.ep_status[epnum][dir].claimed = 1; } #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_unlock(_usbd_mutex); #endif return ret; } bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_lock(_usbd_mutex, OSAL_TIMEOUT_WAIT_FOREVER); #endif // can only release the endpoint if it is claimed and not busy bool const ret = (_usbd_dev.ep_status[epnum][dir].busy == 0) && (_usbd_dev.ep_status[epnum][dir].claimed == 1); if (ret) { _usbd_dev.ep_status[epnum][dir].claimed = 0; } #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_unlock(_usbd_mutex); #endif return ret; } bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); TU_LOG2(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes); // Attempt to transfer on a busy endpoint, sound like an race condition ! TU_ASSERT(_usbd_dev.ep_status[epnum][dir].busy == 0); // Set busy first since the actual transfer can be complete before dcd_edpt_xfer() could return // and usbd task can preempt and clear the busy _usbd_dev.ep_status[epnum][dir].busy = true; if ( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) ) { TU_LOG2("OK\r\n"); return true; }else { // DCD error, mark endpoint as ready to allow next transfer _usbd_dev.ep_status[epnum][dir].busy = false; _usbd_dev.ep_status[epnum][dir].claimed = 0; TU_LOG2("failed\r\n"); TU_BREAKPOINT(); return false; } } bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); return _usbd_dev.ep_status[epnum][dir].busy; } void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_edpt_stall(rhport, ep_addr); _usbd_dev.ep_status[epnum][dir].stalled = true; _usbd_dev.ep_status[epnum][dir].busy = true; } void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_edpt_clear_stall(rhport, ep_addr); _usbd_dev.ep_status[epnum][dir].stalled = false; _usbd_dev.ep_status[epnum][dir].busy = false; } bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); return _usbd_dev.ep_status[epnum][dir].stalled; } /** * usbd_edpt_close will disable an endpoint. * * In progress transfers on this EP may be delivered after this call. * */ void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr) { TU_ASSERT(dcd_edpt_close, /**/); TU_LOG2(" CLOSING Endpoint: 0x%02X\r\n", ep_addr); dcd_edpt_close(rhport, ep_addr); return; } #endif