/* * The MIT License (MIT) * * Copyright (c) 2021 Jean Gressmann * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include #include "bsp/board.h" #include //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB_0_Handler(void) { tud_int_handler(0); } void USB_1_Handler(void) { tud_int_handler(0); } void USB_2_Handler(void) { tud_int_handler(0); } void USB_3_Handler(void) { tud_int_handler(0); } //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ #define LED_PIN PIN_PC18 #define BUTTON_PIN PIN_PB31 #define BOARD_SERCOM SERCOM2 /** Initializes the clocks from the external 12 MHz crystal * * The goal of this setup is to preserve the second PLL * for the application code while still having a reasonable * 48 MHz clock for USB / UART. * * GCLK0: CONF_CPU_FREQUENCY (default 120 MHz) from PLL0 * GCLK1: unused * GCLK2: 12 MHz from XOSC1 * DFLL48M: closed loop from GLCK2 * GCLK3: 48 MHz */ static inline void init_clock_xtal(void) { /* configure for a 12MHz crystal connected to XIN1/XOUT1 */ OSCCTRL->XOSCCTRL[1].reg = OSCCTRL_XOSCCTRL_STARTUP(6) | // 1.953 ms OSCCTRL_XOSCCTRL_RUNSTDBY | OSCCTRL_XOSCCTRL_ENALC | OSCCTRL_XOSCCTRL_IMULT(4) | OSCCTRL_XOSCCTRL_IPTAT(3) | // 8MHz to 16MHz OSCCTRL_XOSCCTRL_XTALEN | OSCCTRL_XOSCCTRL_ENABLE; while(0 == OSCCTRL->STATUS.bit.XOSCRDY1); OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(2) | OSCCTRL_DPLLCTRLB_REFCLK_XOSC1; /* 12MHz / 6 = 2Mhz, input = XOSC1 */ OSCCTRL->Dpll[0].DPLLRATIO.reg = OSCCTRL_DPLLRATIO_LDRFRAC(0x0) | OSCCTRL_DPLLRATIO_LDR((CONF_CPU_FREQUENCY / 1000000 / 2) - 1); /* multiply to get CONF_CPU_FREQUENCY (default = 120MHz) */ OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_RUNSTDBY | OSCCTRL_DPLLCTRLA_ENABLE; while(0 == OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY); /* wait for the PLL0 to be ready */ /* configure clock-generator 0 to use DPLL0 as source -> GCLK0 is used for the core */ GCLK->GENCTRL[0].reg = GCLK_GENCTRL_DIV(0) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DPLL0 | GCLK_GENCTRL_IDC; while(1 == GCLK->SYNCBUSY.bit.GENCTRL0); /* wait for the synchronization between clock domains to be complete */ // configure GCLK2 for 12MHz from XOSC1 GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(0) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC1 | GCLK_GENCTRL_IDC; while(1 == GCLK->SYNCBUSY.bit.GENCTRL2); /* wait for the synchronization between clock domains to be complete */ /* setup DFLL48M to use GLCK2 */ GCLK->PCHCTRL[OSCCTRL_GCLK_ID_DFLL48].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN; OSCCTRL->DFLLCTRLA.reg = 0; while(1 == OSCCTRL->DFLLSYNC.bit.ENABLE); OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_MODE | OSCCTRL_DFLLCTRLB_WAITLOCK; OSCCTRL->DFLLMUL.bit.MUL = 4; // 4 * 12MHz -> 48MHz OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_ENABLE | OSCCTRL_DFLLCTRLA_RUNSTDBY; while(1 == OSCCTRL->DFLLSYNC.bit.ENABLE); // setup 48 MHz GCLK3 from DFLL48M GCLK->GENCTRL[3].reg = GCLK_GENCTRL_DIV(0) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL | GCLK_GENCTRL_IDC; while(1 == GCLK->SYNCBUSY.bit.GENCTRL3); } /* Initialize SERCOM2 for 115200 bps 8N1 using a 48 MHz clock */ static inline void uart_init(void) { gpio_set_pin_function(PIN_PB24, PINMUX_PB24D_SERCOM2_PAD1); gpio_set_pin_function(PIN_PB25, PINMUX_PB25D_SERCOM2_PAD0); MCLK->APBBMASK.bit.SERCOM2_ = 1; GCLK->PCHCTRL[SERCOM2_GCLK_ID_CORE].reg = GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN; BOARD_SERCOM->USART.CTRLA.bit.SWRST = 1; /* reset and disable SERCOM -> enable configuration */ while (BOARD_SERCOM->USART.SYNCBUSY.bit.SWRST); BOARD_SERCOM->USART.CTRLA.reg = SERCOM_USART_CTRLA_SAMPR(0) | /* 0 = 16x / arithmetic baud rate, 1 = 16x / fractional baud rate */ SERCOM_USART_CTRLA_SAMPA(0) | /* 16x over sampling */ SERCOM_USART_CTRLA_FORM(0) | /* 0x0 USART frame, 0x1 USART frame with parity, ... */ SERCOM_USART_CTRLA_DORD | /* LSB first */ SERCOM_USART_CTRLA_MODE(1) | /* 0x0 USART with external clock, 0x1 USART with internal clock */ SERCOM_USART_CTRLA_RXPO(1) | /* SERCOM PAD[1] is used for data reception */ SERCOM_USART_CTRLA_TXPO(0); /* SERCOM PAD[0] is used for data transmission */ BOARD_SERCOM->USART.CTRLB.reg = /* RXEM = 0 -> receiver disabled, LINCMD = 0 -> normal USART transmission, SFDE = 0 -> start-of-frame detection disabled, SBMODE = 0 -> one stop bit, CHSIZE = 0 -> 8 bits */ SERCOM_USART_CTRLB_TXEN | /* transmitter enabled */ SERCOM_USART_CTRLB_RXEN; /* receiver enabled */ // BOARD_SERCOM->USART.BAUD.reg = SERCOM_USART_BAUD_FRAC_FP(0) | SERCOM_USART_BAUD_FRAC_BAUD(26); /* 48000000/(16*115200) = 26.041666667 */ BOARD_SERCOM->USART.BAUD.reg = SERCOM_USART_BAUD_BAUD(63019); /* 65536*(1−16*115200/48000000) */ BOARD_SERCOM->USART.CTRLA.bit.ENABLE = 1; /* activate SERCOM */ while (BOARD_SERCOM->USART.SYNCBUSY.bit.ENABLE); /* wait for SERCOM to be ready */ } static inline void uart_send_buffer(uint8_t const *text, size_t len) { for (size_t i = 0; i < len; ++i) { BOARD_SERCOM->USART.DATA.reg = text[i]; while((BOARD_SERCOM->USART.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) == 0); } } static inline void uart_send_str(const char* text) { while (*text) { BOARD_SERCOM->USART.DATA.reg = *text++; while((BOARD_SERCOM->USART.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) == 0); } } void board_init(void) { // Uncomment this line and change the GCLK for UART/USB to run off the XTAL. // init_clock_xtal(); SystemCoreClock = CONF_CPU_FREQUENCY; #if CFG_TUSB_OS == OPT_OS_NONE SysTick_Config(CONF_CPU_FREQUENCY / 1000); #endif uart_init(); #if CFG_TUSB_DEBUG >= 2 uart_send_str(BOARD_NAME " UART initialized\n"); tu_printf(BOARD_NAME " reset cause %#02x\n", RSTC->RCAUSE.reg); #endif // LED0 init gpio_set_pin_function(LED_PIN, GPIO_PIN_FUNCTION_OFF); gpio_set_pin_direction(LED_PIN, GPIO_DIRECTION_OUT); board_led_write(0); #if CFG_TUSB_DEBUG >= 2 uart_send_str(BOARD_NAME " LED pin configured\n"); #endif // BTN0 init gpio_set_pin_function(BUTTON_PIN, GPIO_PIN_FUNCTION_OFF); gpio_set_pin_direction(BUTTON_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(BUTTON_PIN, GPIO_PULL_UP); #if CFG_TUSB_DEBUG >= 2 uart_send_str(BOARD_NAME " Button pin configured\n"); #endif #if CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB_0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); NVIC_SetPriority(USB_1_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); NVIC_SetPriority(USB_2_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); NVIC_SetPriority(USB_3_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); #endif #if CFG_TUD_ENABLED #if CFG_TUSB_DEBUG >= 2 uart_send_str(BOARD_NAME " USB device enabled\n"); #endif /* USB clock init * The USB module requires a GCLK_USB of 48 MHz ~ 0.25% clock * for low speed and full speed operation. */ hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN); hri_mclk_set_AHBMASK_USB_bit(MCLK); hri_mclk_set_APBBMASK_USB_bit(MCLK); // USB pin init gpio_set_pin_direction(PIN_PA24, GPIO_DIRECTION_OUT); gpio_set_pin_level(PIN_PA24, false); gpio_set_pin_pull_mode(PIN_PA24, GPIO_PULL_OFF); gpio_set_pin_direction(PIN_PA25, GPIO_DIRECTION_OUT); gpio_set_pin_level(PIN_PA25, false); gpio_set_pin_pull_mode(PIN_PA25, GPIO_PULL_OFF); gpio_set_pin_function(PIN_PA24, PINMUX_PA24H_USB_DM); gpio_set_pin_function(PIN_PA25, PINMUX_PA25H_USB_DP); #if CFG_TUSB_DEBUG >= 2 uart_send_str(BOARD_NAME " USB device configured\n"); #endif #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { gpio_set_pin_level(LED_PIN, !state); } uint32_t board_button_read(void) { return (PORT->Group[1].IN.reg & 0x80000000) != 0x80000000; } int board_uart_read(uint8_t* buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const * buf, int len) { if (len < 0) { uart_send_str(buf); } else { uart_send_buffer(buf, len); } return len; } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif // Required by __libc_init_array in startup code if we are compiling using // -nostdlib/-nostartfiles. void _init(void) { }