/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED && \ (CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX) #warning "transdimenion is renamed to chipidea (portable/chipidea/ci_hs) to match other opensource naming convention such as linux. This file will be removed in the future, please update your makefile accordingly" //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX #include "fsl_device_registers.h" #define INCLUDE_FSL_DEVICE_REGISTERS #else // LPCOpen for 18xx & 43xx #include "chip.h" #endif #include "common/tusb_common.h" #include "device/dcd.h" #include "common_transdimension.h" #if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1 #define CleanInvalidateDCache_by_Addr SCB_CleanInvalidateDCache_by_Addr #else #define CleanInvalidateDCache_by_Addr(_addr, _dsize) #endif //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ // ENDPTCTRL enum { ENDPTCTRL_STALL = TU_BIT(0), ENDPTCTRL_TOGGLE_INHIBIT = TU_BIT(5), // used for test only ENDPTCTRL_TOGGLE_RESET = TU_BIT(6), ENDPTCTRL_ENABLE = TU_BIT(7) }; enum { ENDPTCTRL_TYPE_POS = 2, // Endpoint type is 2-bit field }; // USBSTS, USBINTR enum { INTR_USB = TU_BIT(0), INTR_ERROR = TU_BIT(1), INTR_PORT_CHANGE = TU_BIT(2), INTR_RESET = TU_BIT(6), INTR_SOF = TU_BIT(7), INTR_SUSPEND = TU_BIT(8), INTR_NAK = TU_BIT(16) }; // Queue Transfer Descriptor typedef struct { // Word 0: Next QTD Pointer uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed // Word 1: qTQ Token uint32_t : 3 ; volatile uint32_t xact_err : 1 ; uint32_t : 1 ; volatile uint32_t buffer_err : 1 ; volatile uint32_t halted : 1 ; volatile uint32_t active : 1 ; uint32_t : 2 ; uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO. uint32_t : 3 ; uint32_t int_on_complete : 1 ; volatile uint32_t total_bytes : 15 ; uint32_t : 1 ; // Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous //--------------------------------------------------------------------+ // TD is 32 bytes aligned but occupies only 28 bytes // Therefore there are 4 bytes padding that we can use. //--------------------------------------------------------------------+ uint16_t expected_bytes; uint8_t reserved[2]; } dcd_qtd_t; TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct"); // Queue Head typedef struct { // Word 0: Capabilities and Characteristics uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed. uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received. uint32_t max_packet_size : 11 ; ///< Endpoint's wMaxPacketSize uint32_t : 2 ; uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length. uint32_t iso_mult : 2 ; ///< // Word 1: Current qTD Pointer volatile uint32_t qtd_addr; // Word 2-9: Transfer Overlay volatile dcd_qtd_t qtd_overlay; // Word 10-11: Setup request (control OUT only) volatile tusb_control_request_t setup_request; //--------------------------------------------------------------------+ // QHD is 64 bytes aligned but occupies only 48 bytes // Therefore there are 16 bytes padding that we can use. //--------------------------------------------------------------------+ tu_fifo_t * ff; uint8_t reserved[12]; } dcd_qhd_t; TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct"); //--------------------------------------------------------------------+ // Variables //--------------------------------------------------------------------+ typedef struct { dcd_registers_t* regs; // registers const IRQn_Type irqnum; // IRQ number const uint8_t ep_count; // Max bi-directional Endpoints }dcd_controller_t; #if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX static const dcd_controller_t _dcd_controller[] = { // RT1010 and RT1020 only has 1 USB controller #if FSL_FEATURE_SOC_USBHS_COUNT == 1 { .regs = (dcd_registers_t*) USB_BASE , .irqnum = USB_OTG1_IRQn, .ep_count = 8 } #else { .regs = (dcd_registers_t*) USB1_BASE, .irqnum = USB_OTG1_IRQn, .ep_count = 8 }, { .regs = (dcd_registers_t*) USB2_BASE, .irqnum = USB_OTG2_IRQn, .ep_count = 8 } #endif }; #else static const dcd_controller_t _dcd_controller[] = { { .regs = (dcd_registers_t*) LPC_USB0_BASE, .irqnum = USB0_IRQn, .ep_count = 6 }, { .regs = (dcd_registers_t*) LPC_USB1_BASE, .irqnum = USB1_IRQn, .ep_count = 4 } }; #endif #define QTD_NEXT_INVALID 0x01 typedef struct { // Must be at 2K alignment // Each endpoint with direction (IN/OUT) occupies a queue head // for portability, TinyUSB only queue 1 TD for each Qhd dcd_qhd_t qhd[DCD_ATTR_ENDPOINT_MAX][2] TU_ATTR_ALIGNED(64); dcd_qtd_t qtd[DCD_ATTR_ENDPOINT_MAX][2] TU_ATTR_ALIGNED(32); }dcd_data_t; CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048) static dcd_data_t _dcd_data; //--------------------------------------------------------------------+ // Controller API //--------------------------------------------------------------------+ /// follows LPC43xx User Manual 23.10.3 static void bus_reset(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; // The reset value for all endpoint types is the control endpoint. If one endpoint // direction is enabled and the paired endpoint of opposite direction is disabled, then the // endpoint type of the unused direction must be changed from the control type to any other // type (e.g. bulk). Leaving an un-configured endpoint control will cause undefined behavior // for the data PID tracking on the active endpoint. for( uint8_t i=1; i < _dcd_controller[rhport].ep_count; i++) { dcd_reg->ENDPTCTRL[i] = (TUSB_XFER_BULK << ENDPTCTRL_TYPE_POS) | (TUSB_XFER_BULK << (16+ENDPTCTRL_TYPE_POS)); } //------------- Clear All Registers -------------// dcd_reg->ENDPTNAK = dcd_reg->ENDPTNAK; dcd_reg->ENDPTNAKEN = 0; dcd_reg->USBSTS = dcd_reg->USBSTS; dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT; dcd_reg->ENDPTCOMPLETE = dcd_reg->ENDPTCOMPLETE; while (dcd_reg->ENDPTPRIME) {} dcd_reg->ENDPTFLUSH = 0xFFFFFFFF; while (dcd_reg->ENDPTFLUSH) {} // read reset bit in portsc //------------- Queue Head & Queue TD -------------// tu_memclr(&_dcd_data, sizeof(dcd_data_t)); //------------- Set up Control Endpoints (0 OUT, 1 IN) -------------// _dcd_data.qhd[0][0].zero_length_termination = _dcd_data.qhd[0][1].zero_length_termination = 1; _dcd_data.qhd[0][0].max_packet_size = _dcd_data.qhd[0][1].max_packet_size = CFG_TUD_ENDPOINT0_SIZE; _dcd_data.qhd[0][0].qtd_overlay.next = _dcd_data.qhd[0][1].qtd_overlay.next = QTD_NEXT_INVALID; _dcd_data.qhd[0][0].int_on_setup = 1; // OUT only } void dcd_init(uint8_t rhport) { tu_memclr(&_dcd_data, sizeof(dcd_data_t)); dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; // Reset controller dcd_reg->USBCMD |= USBCMD_RESET; while( dcd_reg->USBCMD & USBCMD_RESET ) {} // Set mode to device, must be set immediately after reset dcd_reg->USBMODE = USBMODE_CM_DEVICE; dcd_reg->OTGSC = OTGSC_VBUS_DISCHARGE | OTGSC_OTG_TERMINATION; #if !TUD_OPT_HIGH_SPEED dcd_reg->PORTSC1 = PORTSC1_FORCE_FULL_SPEED; #endif CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); dcd_reg->ENDPTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment dcd_reg->USBSTS = dcd_reg->USBSTS; dcd_reg->USBINTR = INTR_USB | INTR_ERROR | INTR_PORT_CHANGE | INTR_SUSPEND; dcd_reg->USBCMD &= ~0x00FF0000; // Interrupt Threshold Interval = 0 dcd_reg->USBCMD |= USBCMD_RUN_STOP; // Connect } void dcd_int_enable(uint8_t rhport) { NVIC_EnableIRQ(_dcd_controller[rhport].irqnum); } void dcd_int_disable(uint8_t rhport) { NVIC_DisableIRQ(_dcd_controller[rhport].irqnum); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { // Response with status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->DEVICEADDR = (dev_addr << 25) | TU_BIT(24); } void dcd_remote_wakeup(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->PORTSC1 |= PORTSC1_FORCE_PORT_RESUME; } void dcd_connect(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->USBCMD |= USBCMD_RUN_STOP; } void dcd_disconnect(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->USBCMD &= ~USBCMD_RUN_STOP; } //--------------------------------------------------------------------+ // HELPER //--------------------------------------------------------------------+ static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes) { // Force the CPU to flush the buffer. We increase the size by 31 because the call aligns the // address to 32-byte boundaries. Buffer must be word aligned CleanInvalidateDCache_by_Addr((uint32_t*) tu_align((uint32_t) data_ptr, 4), total_bytes + 31); tu_memclr(p_qtd, sizeof(dcd_qtd_t)); p_qtd->next = QTD_NEXT_INVALID; p_qtd->active = 1; p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes; p_qtd->int_on_complete = true; if (data_ptr != NULL) { p_qtd->buffer[0] = (uint32_t) data_ptr; uint32_t const bufend = p_qtd->buffer[0] + total_bytes; for(uint8_t i=1; i<5; i++) { uint32_t const next_page = tu_align4k( p_qtd->buffer[i-1] ) + 4096; if ( bufend <= next_page ) break; p_qtd->buffer[i] = next_page; // TODO page[1] FRAME_N for ISO transfer } } } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_STALL << (dir ? 16 : 0); // flush to abort any primed buffer dcd_reg->ENDPTFLUSH = TU_BIT(epnum + (dir ? 16 : 0)); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); // data toggle also need to be reset dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_TOGGLE_RESET << ( dir ? 16 : 0 ); dcd_reg->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_STALL << ( dir ? 16 : 0)); } bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress); // Must not exceed max endpoint number TU_ASSERT( epnum < _dcd_controller[rhport].ep_count ); //------------- Prepare Queue Head -------------// dcd_qhd_t * p_qhd = &_dcd_data.qhd[epnum][dir]; tu_memclr(p_qhd, sizeof(dcd_qhd_t)); p_qhd->zero_length_termination = 1; p_qhd->max_packet_size = tu_edpt_packet_size(p_endpoint_desc); if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) { p_qhd->iso_mult = 1; } p_qhd->qtd_overlay.next = QTD_NEXT_INVALID; CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); // Enable EP Control dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; uint32_t const epctrl = (p_endpoint_desc->bmAttributes.xfer << ENDPTCTRL_TYPE_POS) | ENDPTCTRL_ENABLE | ENDPTCTRL_TOGGLE_RESET; if ( dir == TUSB_DIR_OUT ) { dcd_reg->ENDPTCTRL[epnum] = (dcd_reg->ENDPTCTRL[epnum] & 0xFFFF0000u) | epctrl; }else { dcd_reg->ENDPTCTRL[epnum] = (dcd_reg->ENDPTCTRL[epnum] & 0x0000FFFFu) | (epctrl << 16); } return true; } void dcd_edpt_close_all (uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; // Disable all non-control endpoints for( uint8_t epnum=1; epnum < _dcd_controller[rhport].ep_count; epnum++) { _dcd_data.qhd[epnum][TUSB_DIR_OUT].qtd_overlay.halted = 1; _dcd_data.qhd[epnum][TUSB_DIR_IN ].qtd_overlay.halted = 1; dcd_reg->ENDPTFLUSH = TU_BIT(epnum) | TU_BIT(epnum+16); dcd_reg->ENDPTCTRL[epnum] = (TUSB_XFER_BULK << ENDPTCTRL_TYPE_POS) | (TUSB_XFER_BULK << (16+ENDPTCTRL_TYPE_POS)); } } void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; _dcd_data.qhd[epnum][dir].qtd_overlay.halted = 1; // Flush EP uint32_t const flush_mask = TU_BIT(epnum + (dir ? 16 : 0)); dcd_reg->ENDPTFLUSH = flush_mask; while(dcd_reg->ENDPTFLUSH & flush_mask); // Clear EP enable dcd_reg->ENDPTCTRL[epnum] &=~(ENDPTCTRL_ENABLE << (dir ? 16 : 0)); } static void qhd_start_xfer(uint8_t rhport, uint8_t epnum, uint8_t dir) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_qhd_t* p_qhd = &_dcd_data.qhd[epnum][dir]; dcd_qtd_t* p_qtd = &_dcd_data.qtd[epnum][dir]; p_qhd->qtd_overlay.halted = false; // clear any previous error p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd // flush cache CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); if ( epnum == 0 ) { // follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism // wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out while(dcd_reg->ENDPTSETUPSTAT & TU_BIT(0)) {} } // start transfer dcd_reg->ENDPTPRIME = TU_BIT(epnum + (dir ? 16 : 0)); } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_qhd_t* p_qhd = &_dcd_data.qhd[epnum][dir]; dcd_qtd_t* p_qtd = &_dcd_data.qtd[epnum][dir]; // Prepare qtd qtd_init(p_qtd, buffer, total_bytes); // Start qhd transfer p_qhd->ff = NULL; qhd_start_xfer(rhport, epnum, dir); return true; } // fifo has to be aligned to 4k boundary bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_qhd_t * p_qhd = &_dcd_data.qhd[epnum][dir]; dcd_qtd_t * p_qtd = &_dcd_data.qtd[epnum][dir]; tu_fifo_buffer_info_t fifo_info; if (dir) { tu_fifo_get_read_info(ff, &fifo_info); } else { tu_fifo_get_write_info(ff, &fifo_info); } if ( fifo_info.len_lin >= total_bytes ) { // Linear length is enough for this transfer qtd_init(p_qtd, fifo_info.ptr_lin, total_bytes); } else { // linear part is not enough // prepare TD up to linear length qtd_init(p_qtd, fifo_info.ptr_lin, fifo_info.len_lin); if ( !tu_offset4k((uint32_t) fifo_info.ptr_wrap) && !tu_offset4k(tu_fifo_depth(ff)) ) { // If buffer is aligned to 4K & buffer size is multiple of 4K // We can make use of buffer page array to also combine the linear + wrapped length p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes; for(uint8_t i = 1, page = 0; i < 5; i++) { // pick up buffer array where linear ends if (p_qtd->buffer[i] == 0) { p_qtd->buffer[i] = (uint32_t) fifo_info.ptr_wrap + 4096 * page; page++; } } CleanInvalidateDCache_by_Addr((uint32_t*) tu_align((uint32_t) fifo_info.ptr_wrap, 4), total_bytes - fifo_info.len_wrap + 31); } else { // TODO we may need to carry the wrapped length after the linear part complete // for now only transfer up to linear part } } // Start qhd transfer p_qhd->ff = ff; qhd_start_xfer(rhport, epnum, dir); return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ static void process_edpt_complete_isr(uint8_t rhport, uint8_t epnum, uint8_t dir) { dcd_qhd_t * p_qhd = &_dcd_data.qhd[epnum][dir]; dcd_qtd_t * p_qtd = &_dcd_data.qtd[epnum][dir]; uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED : ( p_qtd->xact_err || p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS; if ( result != XFER_RESULT_SUCCESS ) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; // flush to abort error buffer dcd_reg->ENDPTFLUSH = TU_BIT(epnum + (dir ? 16 : 0)); } uint16_t const xferred_bytes = p_qtd->expected_bytes - p_qtd->total_bytes; if (p_qhd->ff) { if (dir == TUSB_DIR_IN) { tu_fifo_advance_read_pointer(p_qhd->ff, xferred_bytes); } else { tu_fifo_advance_write_pointer(p_qhd->ff, xferred_bytes); } } // only number of bytes in the IOC qtd dcd_event_xfer_complete(rhport, tu_edpt_addr(epnum, dir), xferred_bytes, result, true); } void dcd_int_handler(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; uint32_t const int_enable = dcd_reg->USBINTR; uint32_t const int_status = dcd_reg->USBSTS & int_enable; dcd_reg->USBSTS = int_status; // Acknowledge handled interrupt // disabled interrupt sources if (int_status == 0) return; // Set if the port controller enters the full or high-speed operational state. // either from Bus Reset or Suspended state if (int_status & INTR_PORT_CHANGE) { // TU_LOG2("PortChange %08lx\r\n", dcd_reg->PORTSC1); // Reset interrupt is not enabled, we manually check if Port Change is due // to connection / disconnection if ( dcd_reg->USBSTS & INTR_RESET ) { dcd_reg->USBSTS = INTR_RESET; if (dcd_reg->PORTSC1 & PORTSC1_CURRENT_CONNECT_STATUS) { uint32_t const speed = (dcd_reg->PORTSC1 & PORTSC1_PORT_SPEED) >> PORTSC1_PORT_SPEED_POS; bus_reset(rhport); dcd_event_bus_reset(rhport, (tusb_speed_t) speed, true); }else { dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true); } } else { // Triggered by resuming from suspended state if ( !(dcd_reg->PORTSC1 & PORTSC1_SUSPEND) ) { dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); } } } if (int_status & INTR_SUSPEND) { // TU_LOG2("Suspend %08lx\r\n", dcd_reg->PORTSC1); if (dcd_reg->PORTSC1 & PORTSC1_SUSPEND) { // Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration. // Skip suspend event if we are not addressed if ((dcd_reg->DEVICEADDR >> 25) & 0x0f) { dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } } } if (int_status & INTR_USB) { // Make sure we read the latest version of _dcd_data. CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t)); uint32_t const edpt_complete = dcd_reg->ENDPTCOMPLETE; dcd_reg->ENDPTCOMPLETE = edpt_complete; // acknowledge if (dcd_reg->ENDPTSETUPSTAT) { //------------- Set up Received -------------// // 23.10.10.2 Operational model for setup transfers dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT; dcd_event_setup_received(rhport, (uint8_t*)(uintptr_t) &_dcd_data.qhd[0][0].setup_request, true); } // 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set // nothing to do, we will submit xfer as error to usbd // if (int_status & INTR_ERROR) { } if ( edpt_complete ) { for(uint8_t epnum = 0; epnum < DCD_ATTR_ENDPOINT_MAX; epnum++) { if ( tu_bit_test(edpt_complete, epnum) ) process_edpt_complete_isr(rhport, epnum, TUSB_DIR_OUT); if ( tu_bit_test(edpt_complete, epnum+16) ) process_edpt_complete_isr(rhport, epnum, TUSB_DIR_IN); } } } if (int_status & INTR_SOF) { dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); } } #endif