/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC18XX || \ CFG_TUSB_MCU == OPT_MCU_LPC43XX || \ CFG_TUSB_MCU == OPT_MCU_RT10XX) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "common/tusb_common.h" #include "device/dcd.h" #if CFG_TUSB_MCU == OPT_MCU_RT10XX #include "fsl_device_registers.h" #else #include "chip.h" #endif //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ /*---------- ENDPTCTRL ----------*/ enum { ENDPTCTRL_MASK_STALL = TU_BIT(0), ENDPTCTRL_MASK_TOGGLE_INHIBIT = TU_BIT(5), ///< used for test only ENDPTCTRL_MASK_TOGGLE_RESET = TU_BIT(6), ENDPTCTRL_MASK_ENABLE = TU_BIT(7) }; /*---------- USBCMD ----------*/ enum { USBCMD_MASK_RUN_STOP = TU_BIT(0), USBCMD_MASK_RESET = TU_BIT(1), USBCMD_MASK_SETUP_TRIPWIRE = TU_BIT(13), USBCMD_MASK_ADD_QTD_TRIPWIRE = TU_BIT(14) ///< This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoint’s linked list. This bit is set and cleared by software during the process of adding a new dTD }; // Interrupt Threshold bit 23:16 /*---------- USBSTS, USBINTR ----------*/ enum { INT_MASK_USB = TU_BIT(0), INT_MASK_ERROR = TU_BIT(1), INT_MASK_PORT_CHANGE = TU_BIT(2), INT_MASK_RESET = TU_BIT(6), INT_MASK_SOF = TU_BIT(7), INT_MASK_SUSPEND = TU_BIT(8), INT_MASK_NAK = TU_BIT(16) }; //------------- PORTSC -------------// enum { PORTSC_CURRENT_CONNECT_STATUS_MASK = TU_BIT(0), PORTSC_FORCE_PORT_RESUME_MASK = TU_BIT(6), PORTSC_SUSPEND_MASK = TU_BIT(7) }; typedef struct { // Word 0: Next QTD Pointer uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed // Word 1: qTQ Token uint32_t : 3 ; volatile uint32_t xact_err : 1 ; uint32_t : 1 ; volatile uint32_t buffer_err : 1 ; volatile uint32_t halted : 1 ; volatile uint32_t active : 1 ; uint32_t : 2 ; uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO. uint32_t : 3 ; uint32_t int_on_complete : 1 ; volatile uint32_t total_bytes : 15 ; uint32_t : 0 ; // Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous //------------- DCD Area -------------// uint16_t expected_bytes; uint8_t reserved[2]; } dcd_qtd_t; TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct"); typedef struct { // Word 0: Capabilities and Characteristics uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed. uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received. uint32_t max_package_size : 11 ; ///< This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize) uint32_t : 2 ; uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length. uint32_t iso_mult : 2 ; ///< uint32_t : 0 ; // Word 1: Current qTD Pointer volatile uint32_t qtd_addr; // Word 2-9: Transfer Overlay volatile dcd_qtd_t qtd_overlay; // Word 10-11: Setup request (control OUT only) volatile tusb_control_request_t setup_request; //--------------------------------------------------------------------+ /// Due to the fact QHD is 64 bytes aligned but occupies only 48 bytes /// thus there are 16 bytes padding free that we can make use of. //--------------------------------------------------------------------+ uint8_t reserved[16]; } dcd_qhd_t; TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct"); //--------------------------------------------------------------------+ // Variables //--------------------------------------------------------------------+ #define QHD_MAX 12 #define QTD_NEXT_INVALID 0x01 typedef struct { // Must be at 2K alignment dcd_qhd_t qhd[QHD_MAX] TU_ATTR_ALIGNED(64); dcd_qtd_t qtd[QHD_MAX] TU_ATTR_ALIGNED(32); }dcd_data_t; static dcd_data_t _dcd_data CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048); static LPC_USBHS_T * const LPC_USB[2] = { LPC_USB0, LPC_USB1 }; //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ /// follows LPC43xx User Manual 23.10.3 static void bus_reset(uint8_t rhport) { LPC_USBHS_T* lpc_usb = LPC_USB[rhport]; // The reset value for all endpoint types is the control endpoint. If one endpoint // direction is enabled and the paired endpoint of opposite direction is disabled, then the // endpoint type of the unused direction must bechanged from the control type to any other // type (e.g. bulk). Leaving an unconfigured endpoint control will cause undefined behavior // for the data PID tracking on the active endpoint. // USB0 has 5 but USB1 only has 3 non-control endpoints for( int i=1; i < (rhport ? 6 : 4); i++) { lpc_usb->ENDPTCTRL[i] = (TUSB_XFER_BULK << 2) | (TUSB_XFER_BULK << 18); } //------------- Clear All Registers -------------// lpc_usb->ENDPTNAK = lpc_usb->ENDPTNAK; lpc_usb->ENDPTNAKEN = 0; lpc_usb->USBSTS_D = lpc_usb->USBSTS_D; lpc_usb->ENDPTSETUPSTAT = lpc_usb->ENDPTSETUPSTAT; lpc_usb->ENDPTCOMPLETE = lpc_usb->ENDPTCOMPLETE; while (lpc_usb->ENDPTPRIME); lpc_usb->ENDPTFLUSH = 0xFFFFFFFF; while (lpc_usb->ENDPTFLUSH); // read reset bit in portsc //------------- Queue Head & Queue TD -------------// tu_memclr(&_dcd_data, sizeof(dcd_data_t)); //------------- Set up Control Endpoints (0 OUT, 1 IN) -------------// _dcd_data.qhd[0].zero_length_termination = _dcd_data.qhd[1].zero_length_termination = 1; _dcd_data.qhd[0].max_package_size = _dcd_data.qhd[1].max_package_size = CFG_TUD_ENDPOINT0_SIZE; _dcd_data.qhd[0].qtd_overlay.next = _dcd_data.qhd[1].qtd_overlay.next = QTD_NEXT_INVALID; _dcd_data.qhd[0].int_on_setup = 1; // OUT only } void dcd_init(uint8_t rhport) { LPC_USBHS_T* const lpc_usb = LPC_USB[rhport]; tu_memclr(&_dcd_data, sizeof(dcd_data_t)); lpc_usb->ENDPOINTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment lpc_usb->USBSTS_D = lpc_usb->USBSTS_D; lpc_usb->USBINTR_D = INT_MASK_USB | INT_MASK_ERROR | INT_MASK_PORT_CHANGE | INT_MASK_RESET | INT_MASK_SUSPEND | INT_MASK_SOF; lpc_usb->USBCMD_D &= ~0x00FF0000; // Interrupt Threshold Interval = 0 lpc_usb->USBCMD_D |= TU_BIT(0); // connect } void dcd_int_enable(uint8_t rhport) { NVIC_EnableIRQ(rhport ? USB1_IRQn : USB0_IRQn); } void dcd_int_disable(uint8_t rhport) { NVIC_DisableIRQ(rhport ? USB1_IRQn : USB0_IRQn); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { // Response with status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); LPC_USB[rhport]->DEVICEADDR = (dev_addr << 25) | TU_BIT(24); } void dcd_set_config(uint8_t rhport, uint8_t config_num) { (void) rhport; (void) config_num; // nothing to do } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } //--------------------------------------------------------------------+ // HELPER //--------------------------------------------------------------------+ // index to bit position in register static inline uint8_t ep_idx2bit(uint8_t ep_idx) { return ep_idx/2 + ( (ep_idx%2) ? 16 : 0); } static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes) { tu_memclr(p_qtd, sizeof(dcd_qtd_t)); p_qtd->next = QTD_NEXT_INVALID; p_qtd->active = 1; p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes; if (data_ptr != NULL) { p_qtd->buffer[0] = (uint32_t) data_ptr; for(uint8_t i=1; i<5; i++) { p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096; } } } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); LPC_USB[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_MASK_STALL << (dir ? 16 : 0); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); // data toggle also need to be reset LPC_USB[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_MASK_TOGGLE_RESET << ( dir ? 16 : 0 ); LPC_USB[rhport]->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_MASK_STALL << ( dir ? 16 : 0)); } bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { // TODO not support ISO yet TU_VERIFY ( p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress); uint8_t const ep_idx = 2*epnum + dir; // USB0 has 5, USB1 has 3 non-control endpoints TU_ASSERT( epnum <= (rhport ? 3 : 5) ); //------------- Prepare Queue Head -------------// dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx]; tu_memclr(p_qhd, sizeof(dcd_qhd_t)); p_qhd->zero_length_termination = 1; p_qhd->max_package_size = p_endpoint_desc->wMaxPacketSize.size; p_qhd->qtd_overlay.next = QTD_NEXT_INVALID; // Enable EP Control LPC_USB[rhport]->ENDPTCTRL[epnum] |= ((p_endpoint_desc->bmAttributes.xfer << 2) | ENDPTCTRL_MASK_ENABLE | ENDPTCTRL_MASK_TOGGLE_RESET) << (dir ? 16 : 0); return true; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const ep_idx = 2*epnum + dir; if ( epnum == 0 ) { // follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism // wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out while(LPC_USB[rhport]->ENDPTSETUPSTAT & TU_BIT(0)) {} } dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx]; dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx]; //------------- Prepare qtd -------------// qtd_init(p_qtd, buffer, total_bytes); p_qtd->int_on_complete = true; p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd // start transfer LPC_USB[rhport]->ENDPTPRIME = TU_BIT( ep_idx2bit(ep_idx) ) ; return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void dcd_isr(uint8_t rhport) { LPC_USBHS_T* const lpc_usb = LPC_USB[rhport]; uint32_t const int_enable = lpc_usb->USBINTR_D; uint32_t const int_status = lpc_usb->USBSTS_D & int_enable; lpc_usb->USBSTS_D = int_status; // Acknowledge handled interrupt if (int_status == 0) return;// disabled interrupt sources if (int_status & INT_MASK_RESET) { bus_reset(rhport); dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true); } if (int_status & INT_MASK_SUSPEND) { if (lpc_usb->PORTSC1_D & PORTSC_SUSPEND_MASK) { // Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration. if ((lpc_usb->DEVICEADDR >> 25) & 0x0f) { dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } } } // TODO disconnection does not generate interrupt !!!!!! // if (int_status & INT_MASK_PORT_CHANGE) // { // if ( !(lpc_usb->PORTSC1_D & PORTSC_CURRENT_CONNECT_STATUS_MASK) ) // { // dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_UNPLUGGED }; // dcd_event_handler(&event, true); // } // } if (int_status & INT_MASK_USB) { uint32_t const edpt_complete = lpc_usb->ENDPTCOMPLETE; lpc_usb->ENDPTCOMPLETE = edpt_complete; // acknowledge if (lpc_usb->ENDPTSETUPSTAT) { //------------- Set up Received -------------// // 23.10.10.2 Operational model for setup transfers lpc_usb->ENDPTSETUPSTAT = lpc_usb->ENDPTSETUPSTAT;// acknowledge dcd_event_setup_received(rhport, (uint8_t*) &_dcd_data.qhd[0].setup_request, true); } if ( edpt_complete ) { for(uint8_t ep_idx = 0; ep_idx < QHD_MAX; ep_idx++) { if ( tu_bit_test(edpt_complete, ep_idx2bit(ep_idx)) ) { // 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx]; uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED : ( p_qtd->xact_err ||p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS; uint8_t const ep_addr = (ep_idx/2) | ( (ep_idx & 0x01) ? TUSB_DIR_IN_MASK : 0 ); dcd_event_xfer_complete(rhport, ep_addr, p_qtd->expected_bytes - p_qtd->total_bytes, result, true); // only number of bytes in the IOC qtd } } } } if (int_status & INT_MASK_SOF) { dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); } if (int_status & INT_MASK_NAK) {} if (int_status & INT_MASK_ERROR) TU_ASSERT(false, ); } #endif