/* * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if defined (STM32L475xx) || defined (STM32L476xx) || \ defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || \ defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || \ defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx) #define STM32L4_SYNOPSYS #endif #if TUSB_OPT_DEVICE_ENABLED && \ ( CFG_TUSB_MCU == OPT_MCU_STM32F2 || \ CFG_TUSB_MCU == OPT_MCU_STM32F4 || \ CFG_TUSB_MCU == OPT_MCU_STM32F7 || \ CFG_TUSB_MCU == OPT_MCU_STM32H7 || \ (CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \ ) // TODO Support OTG_HS // EP_MAX : Max number of bi-directional endpoints including EP0 // EP_FIFO_SIZE : Size of dedicated USB SRAM #if CFG_TUSB_MCU == OPT_MCU_STM32F2 #include "stm32f2xx.h" #define EP_MAX USB_OTG_FS_MAX_IN_ENDPOINTS #define EP_FIFO_SIZE USB_OTG_FS_TOTAL_FIFO_SIZE #elif CFG_TUSB_MCU == OPT_MCU_STM32F4 #include "stm32f4xx.h" #define EP_MAX USB_OTG_FS_MAX_IN_ENDPOINTS #define EP_FIFO_SIZE USB_OTG_FS_TOTAL_FIFO_SIZE #elif CFG_TUSB_MCU == OPT_MCU_STM32H7 #include "stm32h7xx.h" #define EP_MAX 9 #define EP_FIFO_SIZE 4096 // TODO The official name of the USB FS peripheral on H7 is "USB2_OTG_FS". #elif CFG_TUSB_MCU == OPT_MCU_STM32F7 #include "stm32f7xx.h" #define EP_MAX 6 #define EP_FIFO_SIZE 1280 #elif CFG_TUSB_MCU == OPT_MCU_STM32L4 #include "stm32l4xx.h" #define EP_MAX 6 #define EP_FIFO_SIZE 1280 #else #error "Unsupported MCUs" #endif #include "device/dcd.h" /*------------------------------------------------------------------*/ /* MACRO TYPEDEF CONSTANT ENUM *------------------------------------------------------------------*/ #define DEVICE_BASE (USB_OTG_DeviceTypeDef *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_DEVICE_BASE) #define OUT_EP_BASE (USB_OTG_OUTEndpointTypeDef *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_OUT_ENDPOINT_BASE) #define IN_EP_BASE (USB_OTG_INEndpointTypeDef *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_IN_ENDPOINT_BASE) #define FIFO_BASE(_x) ((volatile uint32_t *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE)) static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6]; static uint8_t _setup_offs; // We store up to 3 setup packets. typedef struct { uint8_t * buffer; uint16_t total_len; uint16_t queued_len; uint16_t max_size; bool short_packet; } xfer_ctl_t; typedef volatile uint32_t * usb_fifo_t; xfer_ctl_t xfer_status[EP_MAX][2]; #define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir] // Setup the control endpoint 0. static void bus_reset(void) { USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE; for(uint8_t n = 0; n < EP_MAX; n++) { out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK; } dev->DAINTMSK |= (1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos); dev->DOEPMSK |= USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM; dev->DIEPMSK |= USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM; // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO MAX | // --------------- // | ... | // --------------- y + x + 16 + GRXFSIZ // | IN FIFO 2 | // --------------- x + 16 + GRXFSIZ // | IN FIFO 1 | // --------------- 16 + GRXFSIZ // | IN FIFO 0 | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits): // - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN // // - All EP OUT shared a unique OUT FIFO which uses // * 10 locations in hardware for setup packets + setup control words (up to 3 setup packets). // * 2 locations for OUT endpoint control words. // * 16 for largest packet size of 64 bytes. ( TODO Highspeed is 512 bytes) // * 1 location for global NAK (not required/used here). // * It is recommended to allocate 2 times the largest packet size, therefore // Recommended value = 10 + 1 + 2 x (16+2) = 47 --> Let's make it 52 USB_OTG_FS->GRXFSIZ = 52; // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word ) USB_OTG_FS->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | (USB_OTG_FS->GRXFSIZ & 0x0000ffffUL); out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos); USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT; } static void end_of_reset(void) { USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE; // On current silicon on the Full Speed core, speed is fixed to Full Speed. // However, keep for debugging and in case Low Speed is ever supported. uint32_t enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos; // Maximum packet size for EP 0 is set for both directions by writing // DIEPCTL. if(enum_spd == 0x03) { // 64 bytes in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = 64; xfer_status[0][TUSB_DIR_IN].max_size = 64; } else { // 8 bytes in_ep[0].DIEPCTL |= (0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = 8; xfer_status[0][TUSB_DIR_IN].max_size = 8; } } /*------------------------------------------------------------------*/ /* Controller API *------------------------------------------------------------------*/ void dcd_init (uint8_t rhport) { (void) rhport; // Programming model begins in the last section of the chapter on the USB // peripheral in each Reference Manual. USB_OTG_FS->GAHBCFG |= USB_OTG_GAHBCFG_TXFELVL | USB_OTG_GAHBCFG_GINT; // No HNP/SRP (no OTG support), program timeout later, turnaround // programmed for 32+ MHz. // TODO: PHYSEL is read-only on some cores (STM32F407). Worth gating? USB_OTG_FS->GUSBCFG |= (0x06 << USB_OTG_GUSBCFG_TRDT_Pos) | USB_OTG_GUSBCFG_PHYSEL; // Clear all used interrupts USB_OTG_FS->GINTSTS |= USB_OTG_GINTSTS_OTGINT | USB_OTG_GINTSTS_MMIS | \ USB_OTG_GINTSTS_USBRST | USB_OTG_GINTSTS_ENUMDNE | \ USB_OTG_GINTSTS_ESUSP | USB_OTG_GINTSTS_USBSUSP | USB_OTG_GINTSTS_SOF; // Required as part of core initialization. Disable OTGINT as we don't use // it right now. TODO: How should mode mismatch be handled? It will cause // the core to stop working/require reset. USB_OTG_FS->GINTMSK |= /* USB_OTG_GINTMSK_OTGINT | */ USB_OTG_GINTMSK_MMISM; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; // If USB host misbehaves during status portion of control xfer // (non zero-length packet), send STALL back and discard. Full speed. dev->DCFG |= USB_OTG_DCFG_NZLSOHSK | (3 << USB_OTG_DCFG_DSPD_Pos); USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_USBRST | USB_OTG_GINTMSK_ENUMDNEM | \ USB_OTG_GINTMSK_SOFM | USB_OTG_GINTMSK_RXFLVLM /* SB_OTG_GINTMSK_ESUSPM | \ USB_OTG_GINTMSK_USBSUSPM */; // Enable VBUS hardware sensing, enable pullup, enable peripheral. #ifdef USB_OTG_GCCFG_VBDEN USB_OTG_FS->GCCFG |= USB_OTG_GCCFG_VBDEN | USB_OTG_GCCFG_PWRDWN; #else USB_OTG_FS->GCCFG |= USB_OTG_GCCFG_VBUSBSEN | USB_OTG_GCCFG_PWRDWN; #endif // Soft Connect -> Enable pullup on D+/D-. // This step does not appear to be specified in the programmer's model. dev->DCTL &= ~USB_OTG_DCTL_SDIS; } void dcd_int_enable (uint8_t rhport) { (void) rhport; NVIC_EnableIRQ(OTG_FS_IRQn); } void dcd_int_disable (uint8_t rhport) { (void) rhport; NVIC_DisableIRQ(OTG_FS_IRQn); } void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk; // Response with status after changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); } void dcd_set_config (uint8_t rhport, uint8_t config_num) { (void) rhport; (void) config_num; // Nothing to do } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } /*------------------------------------------------------------------*/ /* DCD Endpoint port *------------------------------------------------------------------*/ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE; USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE; uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress); uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress); TU_ASSERT(desc_edpt->wMaxPacketSize.size <= 64); TU_ASSERT(epnum < EP_MAX); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->max_size = desc_edpt->wMaxPacketSize.size; if(dir == TUSB_DIR_OUT) { out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) | \ desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos | \ desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos; dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_OEPM_Pos + epnum)); } else { // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO MAX | // --------------- // | ... | // --------------- y + x + 16 + GRXFSIZ // | IN FIFO 2 | // --------------- x + 16 + GRXFSIZ // | IN FIFO 1 | // --------------- 16 + GRXFSIZ // | IN FIFO 0 | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // Since OUT FIFO = GRXFSIZ, FIFO 0 = 16, for simplicity, we equally allocated for the rest of endpoints // - Size : (FIFO_SIZE/4 - GRXFSIZ - 16) / (EP_MAX-1) // - Offset: GRXFSIZ + 16 + Size*(epnum-1) // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n". in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) | \ epnum << USB_OTG_DIEPCTL_TXFNUM_Pos | \ desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos | \ (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) | \ desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos; dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum)); // Both TXFD and TXSA are in unit of 32-bit words. // IN FIFO 0 was configured during enumeration, hence the "+ 16". uint16_t const allocated_size = (USB_OTG_FS->GRXFSIZ & 0x0000ffff) + 16; uint16_t const fifo_size = (EP_FIFO_SIZE/4 - allocated_size) / (EP_MAX-1); uint32_t const fifo_offset = allocated_size + fifo_size*(epnum-1); // DIEPTXF starts at FIFO #1. USB_OTG_FS->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | fifo_offset; } return true; } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE; USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->buffer = buffer; xfer->total_len = total_bytes; xfer->queued_len = 0; xfer->short_packet = false; uint16_t num_packets = (total_bytes / xfer->max_size); uint8_t short_packet_size = total_bytes % xfer->max_size; // Zero-size packet is special case. if(short_packet_size > 0 || (total_bytes == 0)) { num_packets++; } // IN and OUT endpoint xfers are interrupt-driven, we just schedule them // here. if(dir == TUSB_DIR_IN) { // A full IN transfer (multiple packets, possibly) triggers XFRC. in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) | \ ((total_bytes & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) << USB_OTG_DIEPTSIZ_XFRSIZ_Pos); in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK; dev->DIEPEMPMSK |= (1 << epnum); } else { // Each complete packet for OUT xfers triggers XFRC. out_ep[epnum].DOEPTSIZ |= (1 << USB_OTG_DOEPTSIZ_PKTCNT_Pos) | \ ((xfer->max_size & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) << USB_OTG_DOEPTSIZ_XFRSIZ_Pos); out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK; } return true; } // TODO: The logic for STALLing and disabling an endpoint is very similar // (send STALL versus NAK handshakes back). Refactor into resuable function. void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE; USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); if(dir == TUSB_DIR_IN) { // Only disable currently enabled non-control endpoint if ( (epnum == 0) || !(in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPENA) ){ in_ep[epnum].DIEPCTL |= (USB_OTG_DIEPCTL_SNAK | USB_OTG_DIEPCTL_STALL); } else { // Stop transmitting packets and NAK IN xfers. in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK; while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_INEPNE) == 0); // Disable the endpoint. in_ep[epnum].DIEPCTL |= (USB_OTG_DIEPCTL_STALL | USB_OTG_DIEPCTL_EPDIS); while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_EPDISD_Msk) == 0); in_ep[epnum].DIEPINT = USB_OTG_DIEPINT_EPDISD; } // Flush the FIFO, and wait until we have confirmed it cleared. USB_OTG_FS->GRSTCTL |= ((epnum - 1) << USB_OTG_GRSTCTL_TXFNUM_Pos); USB_OTG_FS->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH; while((USB_OTG_FS->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0); } else { // Only disable currently enabled non-control endpoint if ( (epnum == 0) || !(out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPENA) ){ out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_STALL; } else { // Asserting GONAK is required to STALL an OUT endpoint. // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt // anyway, and it can't be cleared by user code. If this while loop never // finishes, we have bigger problems than just the stack. dev->DCTL |= USB_OTG_DCTL_SGONAK; while((USB_OTG_FS->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0); // Ditto here- disable the endpoint. out_ep[epnum].DOEPCTL |= (USB_OTG_DOEPCTL_STALL | USB_OTG_DOEPCTL_EPDIS); while((out_ep[epnum].DOEPINT & USB_OTG_DOEPINT_EPDISD_Msk) == 0); out_ep[epnum].DOEPINT = USB_OTG_DOEPINT_EPDISD; // Allow other OUT endpoints to keep receiving. dev->DCTL |= USB_OTG_DCTL_CGONAK; } } } void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE; USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); if(dir == TUSB_DIR_IN) { in_ep[epnum].DIEPCTL &= ~USB_OTG_DIEPCTL_STALL; uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> \ USB_OTG_DIEPCTL_EPTYP_Pos; // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt // and bulk endpoints. if(eptype == 2 || eptype == 3) { in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; } } else { out_ep[epnum].DOEPCTL &= ~USB_OTG_DOEPCTL_STALL; uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> \ USB_OTG_DOEPCTL_EPTYP_Pos; // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt // and bulk endpoints. if(eptype == 2 || eptype == 3) { out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; } } } /*------------------------------------------------------------------*/ // TODO: Split into "receive on endpoint 0" and "receive generic"; endpoint 0's // DOEPTSIZ register is smaller than the others, and so is insufficient for // determining how much of an OUT transfer is actually remaining. static void receive_packet(xfer_ctl_t * xfer, /* USB_OTG_OUTEndpointTypeDef * out_ep, */ uint16_t xfer_size) { usb_fifo_t rx_fifo = FIFO_BASE(0); // See above TODO // uint16_t remaining = (out_ep->DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos; // xfer->queued_len = xfer->total_len - remaining; uint16_t remaining = xfer->total_len - xfer->queued_len; uint16_t to_recv_size; if(remaining <= xfer->max_size) { // Avoid buffer overflow. to_recv_size = (xfer_size > remaining) ? remaining : xfer_size; } else { // Room for full packet, choose recv_size based on what the microcontroller // claims. to_recv_size = (xfer_size > xfer->max_size) ? xfer->max_size : xfer_size; } uint8_t to_recv_rem = to_recv_size % 4; uint16_t to_recv_size_aligned = to_recv_size - to_recv_rem; // Do not assume xfer buffer is aligned. uint8_t * base = (xfer->buffer + xfer->queued_len); // This for loop always runs at least once- skip if less than 4 bytes // to collect. if(to_recv_size >= 4) { for(uint16_t i = 0; i < to_recv_size_aligned; i += 4) { uint32_t tmp = (* rx_fifo); base[i] = tmp & 0x000000FF; base[i + 1] = (tmp & 0x0000FF00) >> 8; base[i + 2] = (tmp & 0x00FF0000) >> 16; base[i + 3] = (tmp & 0xFF000000) >> 24; } } // Do not read invalid bytes from RX FIFO. if(to_recv_rem != 0) { uint32_t tmp = (* rx_fifo); uint8_t * last_32b_bound = base + to_recv_size_aligned; last_32b_bound[0] = tmp & 0x000000FF; if(to_recv_rem > 1) { last_32b_bound[1] = (tmp & 0x0000FF00) >> 8; } if(to_recv_rem > 2) { last_32b_bound[2] = (tmp & 0x00FF0000) >> 16; } } xfer->queued_len += xfer_size; // Per USB spec, a short OUT packet (including length 0) is always // indicative of the end of a transfer (at least for ctl, bulk, int). xfer->short_packet = (xfer_size < xfer->max_size); } static void transmit_packet(xfer_ctl_t * xfer, USB_OTG_INEndpointTypeDef * in_ep, uint8_t fifo_num) { usb_fifo_t tx_fifo = FIFO_BASE(fifo_num); uint16_t remaining = (in_ep->DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos; xfer->queued_len = xfer->total_len - remaining; uint16_t to_xfer_size = (remaining > xfer->max_size) ? xfer->max_size : remaining; uint8_t to_xfer_rem = to_xfer_size % 4; uint16_t to_xfer_size_aligned = to_xfer_size - to_xfer_rem; // Buffer might not be aligned to 32b, so we need to force alignment // by copying to a temp var. uint8_t * base = (xfer->buffer + xfer->queued_len); // This for loop always runs at least once- skip if less than 4 bytes // to send off. if(to_xfer_size >= 4) { for(uint16_t i = 0; i < to_xfer_size_aligned; i += 4) { uint32_t tmp = base[i] | (base[i + 1] << 8) | \ (base[i + 2] << 16) | (base[i + 3] << 24); (* tx_fifo) = tmp; } } // Do not read beyond end of buffer if not divisible by 4. if(to_xfer_rem != 0) { uint32_t tmp = 0; uint8_t * last_32b_bound = base + to_xfer_size_aligned; tmp |= last_32b_bound[0]; if(to_xfer_rem > 1) { tmp |= (last_32b_bound[1] << 8); } if(to_xfer_rem > 2) { tmp |= (last_32b_bound[2] << 16); } (* tx_fifo) = tmp; } } static void read_rx_fifo(USB_OTG_OUTEndpointTypeDef * out_ep) { usb_fifo_t rx_fifo = FIFO_BASE(0); // Pop control word off FIFO (completed xfers will have 2 control words, // we only pop one ctl word each interrupt). uint32_t ctl_word = USB_OTG_FS->GRXSTSP; uint8_t pktsts = (ctl_word & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos; uint8_t epnum = (ctl_word & USB_OTG_GRXSTSP_EPNUM_Msk) >> USB_OTG_GRXSTSP_EPNUM_Pos; uint16_t bcnt = (ctl_word & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos; switch(pktsts) { case 0x01: // Global OUT NAK (Interrupt) break; case 0x02: // Out packet recvd { xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT); receive_packet(xfer, bcnt); } break; case 0x03: // Out packet done (Interrupt) break; case 0x04: // Setup packet done (Interrupt) _setup_offs = 2 - ((out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_STUPCNT_Msk) >> USB_OTG_DOEPTSIZ_STUPCNT_Pos); out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos); break; case 0x06: // Setup packet recvd { uint8_t setup_left = ((out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_STUPCNT_Msk) >> USB_OTG_DOEPTSIZ_STUPCNT_Pos); // We can receive up to three setup packets in succession, but // only the last one is valid. _setup_packet[4 - 2*setup_left] = (* rx_fifo); _setup_packet[5 - 2*setup_left] = (* rx_fifo); } break; default: // Invalid TU_BREAKPOINT(); break; } } static void handle_epout_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) { // DAINT for a given EP clears when DOEPINTx is cleared. // OEPINT will be cleared when DAINT's out bits are cleared. for(uint8_t n = 0; n < EP_MAX; n++) { xfer_ctl_t * xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT); if(dev->DAINT & (1 << (USB_OTG_DAINT_OEPINT_Pos + n))) { // SETUP packet Setup Phase done. if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_STUP) { out_ep[n].DOEPINT = USB_OTG_DOEPINT_STUP; dcd_event_setup_received(0, (uint8_t*) &_setup_packet[2*_setup_offs], true); _setup_offs = 0; } // OUT XFER complete (single packet). if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_XFRC) { out_ep[n].DOEPINT = USB_OTG_DOEPINT_XFRC; // TODO: Because of endpoint 0's constrained size, we handle XFRC // on a packet-basis. The core can internally handle multiple OUT // packets; it would be more efficient to only trigger XFRC on a // completed transfer for non-0 endpoints. // Transfer complete if short packet or total len is transferred if(xfer->short_packet || (xfer->queued_len == xfer->total_len)) { xfer->short_packet = false; dcd_event_xfer_complete(0, n, xfer->queued_len, XFER_RESULT_SUCCESS, true); } else { // Schedule another packet to be received. out_ep[n].DOEPTSIZ |= (1 << USB_OTG_DOEPTSIZ_PKTCNT_Pos) | \ ((xfer->max_size & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) << USB_OTG_DOEPTSIZ_XFRSIZ_Pos); out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK; } } } } } static void handle_epin_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) { // DAINT for a given EP clears when DIEPINTx is cleared. // IEPINT will be cleared when DAINT's out bits are cleared. for(uint8_t n = 0; n < EP_MAX; n++) { xfer_ctl_t * xfer = XFER_CTL_BASE(n, TUSB_DIR_IN); if(dev->DAINT & (1 << (USB_OTG_DAINT_IEPINT_Pos + n))) { // IN XFER complete (entire xfer). if(in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC) { in_ep[n].DIEPINT = USB_OTG_DIEPINT_XFRC; dev->DIEPEMPMSK &= ~(1 << n); // Turn off TXFE b/c xfer inactive. dcd_event_xfer_complete(0, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true); } // XFER FIFO empty if(in_ep[n].DIEPINT & USB_OTG_DIEPINT_TXFE) { in_ep[n].DIEPINT = USB_OTG_DIEPINT_TXFE; transmit_packet(xfer, &in_ep[n], n); } } } } void OTG_FS_IRQHandler(void) { USB_OTG_DeviceTypeDef * dev = DEVICE_BASE; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE; USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE; uint32_t int_status = USB_OTG_FS->GINTSTS; if(int_status & USB_OTG_GINTSTS_USBRST) { // USBRST is start of reset. USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_USBRST; bus_reset(); } if(int_status & USB_OTG_GINTSTS_ENUMDNE) { // ENUMDNE detects speed of the link. For full-speed, we // always expect the same value. This interrupt is considered // the end of reset. USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_ENUMDNE; end_of_reset(); dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true); } if(int_status & USB_OTG_GINTSTS_SOF) { USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_SOF; dcd_event_bus_signal(0, DCD_EVENT_SOF, true); } if(int_status & USB_OTG_GINTSTS_RXFLVL) { read_rx_fifo(out_ep); } // OUT endpoint interrupt handling. if(int_status & USB_OTG_GINTSTS_OEPINT) { handle_epout_ints(dev, out_ep); } // IN endpoint interrupt handling. if(int_status & USB_OTG_GINTSTS_IEPINT) { handle_epin_ints(dev, in_ep); } } #endif