/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" /* Since 2012 starting with LPC11uxx, NXP start to use common USB Device Controller with code name LPC IP3511 * for almost their new MCUs. Currently supported and tested families are * - LPC11U68, LPC11U37 * - LPC1347 * - LPC51U68 * - LPC54114 * - LPC55s69 */ #if CFG_TUD_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_LPC11UXX || \ CFG_TUSB_MCU == OPT_MCU_LPC13XX || \ CFG_TUSB_MCU == OPT_MCU_LPC15XX || \ CFG_TUSB_MCU == OPT_MCU_LPC51UXX || \ CFG_TUSB_MCU == OPT_MCU_LPC54XXX || \ CFG_TUSB_MCU == OPT_MCU_LPC55XX) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #if CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13XX || CFG_TUSB_MCU == OPT_MCU_LPC15XX // LPCOpen #include "chip.h" #else // SDK #include "fsl_device_registers.h" #define INCLUDE_FSL_DEVICE_REGISTERS #endif #include "device/dcd.h" //--------------------------------------------------------------------+ // IP3511 Registers //--------------------------------------------------------------------+ typedef struct { __IO uint32_t DEVCMDSTAT; // Device Command/Status register, offset: 0x0 __I uint32_t INFO; // Info register, offset: 0x4 __IO uint32_t EPLISTSTART; // EP Command/Status List start address, offset: 0x8 __IO uint32_t DATABUFSTART; // Data buffer start address, offset: 0xC __IO uint32_t LPM; // Link Power Management register, offset: 0x10 __IO uint32_t EPSKIP; // Endpoint skip, offset: 0x14 __IO uint32_t EPINUSE; // Endpoint Buffer in use, offset: 0x18 __IO uint32_t EPBUFCFG; // Endpoint Buffer Configuration register, offset: 0x1C __IO uint32_t INTSTAT; // interrupt status register, offset: 0x20 __IO uint32_t INTEN; // interrupt enable register, offset: 0x24 __IO uint32_t INTSETSTAT; // set interrupt status register, offset: 0x28 uint8_t RESERVED_0[8]; __I uint32_t EPTOGGLE; // Endpoint toggle register, offset: 0x34 } dcd_registers_t; // Max nbytes for each control/bulk/interrupt transfer enum { NBYTES_CBI_FULLSPEED_MAX = 64, NBYTES_CBI_HIGHSPEED_MAX = 32767 // can be up to all 15-bit, but only tested with 4096 }; enum { INT_SOF_MASK = TU_BIT(30), INT_DEVICE_STATUS_MASK = TU_BIT(31) }; enum { CMDSTAT_DEVICE_ADDR_MASK = TU_BIT(7 )-1, CMDSTAT_DEVICE_ENABLE_MASK = TU_BIT(7 ), CMDSTAT_SETUP_RECEIVED_MASK = TU_BIT(8 ), CMDSTAT_DEVICE_CONNECT_MASK = TU_BIT(16), // reflect the soft-connect only, does not reflect the actual attached state CMDSTAT_DEVICE_SUSPEND_MASK = TU_BIT(17), // 23-22 is link speed (only available for HighSpeed port) CMDSTAT_CONNECT_CHANGE_MASK = TU_BIT(24), CMDSTAT_SUSPEND_CHANGE_MASK = TU_BIT(25), CMDSTAT_RESET_CHANGE_MASK = TU_BIT(26), CMDSTAT_VBUS_DEBOUNCED_MASK = TU_BIT(28), }; enum { CMDSTAT_SPEED_SHIFT = 22 }; //--------------------------------------------------------------------+ // Endpoint Command/Status List //--------------------------------------------------------------------+ // Endpoint Command/Status typedef union TU_ATTR_PACKED { // Full and High speed has different bit layout for buffer_offset and nbytes // Buffer (aligned 64) = DATABUFSTART [31:22] | buffer_offset [21:6] volatile struct { uint32_t offset : 16; uint32_t nbytes : 10; uint32_t TU_RESERVED : 6; } buffer_fs; // Buffer (aligned 64) = USB_RAM [31:17] | buffer_offset [16:6] volatile struct { uint32_t offset : 11 ; uint32_t nbytes : 15 ; uint32_t TU_RESERVED : 6 ; } buffer_hs; volatile struct { uint32_t TU_RESERVED : 26; uint32_t is_iso : 1 ; uint32_t toggle_mode : 1 ; uint32_t toggle_reset : 1 ; uint32_t stall : 1 ; uint32_t disable : 1 ; uint32_t active : 1 ; }; }ep_cmd_sts_t; TU_VERIFY_STATIC( sizeof(ep_cmd_sts_t) == 4, "size is not correct" ); // Software transfer management typedef struct { uint16_t total_bytes; uint16_t xferred_bytes; uint16_t nbytes; // prevent unaligned access on Highspeed port on USB_SRAM uint16_t TU_RESERVED; }xfer_dma_t; // Absolute max of endpoints pairs for all port // - 11 13 15 51 54 has 5x2 endpoints // - 55 usb0 (FS) has 5x2 endpoints, usb1 (HS) has 6x2 endpoints #define MAX_EP_PAIRS 6 // NOTE data will be transferred as soon as dcd get request by dcd_pipe(_queue)_xfer using double buffering. // current_td is used to keep track of number of remaining & xferred bytes of the current request. typedef struct { // 256 byte aligned, 2 for double buffer (not used) // Each cmd_sts can only transfer up to DMA_NBYTES_MAX bytes each ep_cmd_sts_t ep[2*MAX_EP_PAIRS][2]; xfer_dma_t dma[2*MAX_EP_PAIRS]; TU_ATTR_ALIGNED(64) uint8_t setup_packet[8]; }dcd_data_t; // EP list must be 256-byte aligned // Some MCU controller may require this variable to be placed in specific SRAM region. // For example: LPC55s69 port1 Highspeed must be USB_RAM (0x40100000) // Use CFG_TUSB_MEM_SECTION to place it accordingly. CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(256) static dcd_data_t _dcd; //--------------------------------------------------------------------+ // Multiple Controllers //--------------------------------------------------------------------+ typedef struct { dcd_registers_t* regs; // registers const tusb_speed_t max_speed; // max link speed const IRQn_Type irqnum; // IRQ number const uint8_t ep_pairs; // Max bi-directional Endpoints }dcd_controller_t; #ifdef INCLUDE_FSL_DEVICE_REGISTERS static const dcd_controller_t _dcd_controller[] = { { .regs = (dcd_registers_t*) USB0_BASE , .max_speed = TUSB_SPEED_FULL, .irqnum = USB0_IRQn, .ep_pairs = FSL_FEATURE_USB_EP_NUM }, #if defined(FSL_FEATURE_SOC_USBHSD_COUNT) && FSL_FEATURE_SOC_USBHSD_COUNT { .regs = (dcd_registers_t*) USBHSD_BASE, .max_speed = TUSB_SPEED_HIGH, .irqnum = USB1_IRQn, .ep_pairs = FSL_FEATURE_USBHSD_EP_NUM } #endif }; #else static const dcd_controller_t _dcd_controller[] = { { .regs = (dcd_registers_t*) LPC_USB0_BASE, .max_speed = TUSB_SPEED_FULL, .irqnum = USB0_IRQn, .ep_pairs = 5 }, }; #endif //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static inline uint16_t get_buf_offset(void const * buffer) { uint32_t addr = (uint32_t) buffer; TU_ASSERT( (addr & 0x3f) == 0, 0 ); return ( (addr >> 6) & 0xFFFFUL ) ; } static inline uint8_t ep_addr2id(uint8_t ep_addr) { return 2*(ep_addr & 0x0F) + ((ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0); } //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ void dcd_init(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->EPLISTSTART = (uint32_t) _dcd.ep; dcd_reg->DATABUFSTART = tu_align((uint32_t) &_dcd, TU_BIT(22)); // 22-bit alignment dcd_reg->INTSTAT |= dcd_reg->INTSTAT; // clear all pending interrupt dcd_reg->INTEN = INT_DEVICE_STATUS_MASK; dcd_reg->DEVCMDSTAT |= CMDSTAT_DEVICE_ENABLE_MASK | CMDSTAT_DEVICE_CONNECT_MASK | CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK; NVIC_ClearPendingIRQ(_dcd_controller[rhport].irqnum); } void dcd_int_enable(uint8_t rhport) { NVIC_EnableIRQ(_dcd_controller[rhport].irqnum); } void dcd_int_disable(uint8_t rhport) { NVIC_DisableIRQ(_dcd_controller[rhport].irqnum); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; // Response with status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); dcd_reg->DEVCMDSTAT &= ~CMDSTAT_DEVICE_ADDR_MASK; dcd_reg->DEVCMDSTAT |= dev_addr; } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } void dcd_connect(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->DEVCMDSTAT |= CMDSTAT_DEVICE_CONNECT_MASK; } void dcd_disconnect(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->DEVCMDSTAT &= ~CMDSTAT_DEVICE_CONNECT_MASK; } void dcd_sof_enable(uint8_t rhport, bool en) { (void) rhport; (void) en; // TODO implement later } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; // TODO cannot able to STALL Control OUT endpoint !!!!! FIXME try some walk-around uint8_t const ep_id = ep_addr2id(ep_addr); _dcd.ep[ep_id][0].stall = 1; } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const ep_id = ep_addr2id(ep_addr); _dcd.ep[ep_id][0].stall = 0; _dcd.ep[ep_id][0].toggle_reset = 1; _dcd.ep[ep_id][0].toggle_mode = 0; } bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { (void) rhport; // TODO not support ISO yet TU_VERIFY(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); //------------- Prepare Queue Head -------------// uint8_t ep_id = ep_addr2id(p_endpoint_desc->bEndpointAddress); // Check if endpoint is available TU_ASSERT( _dcd.ep[ep_id][0].disable && _dcd.ep[ep_id][1].disable ); tu_memclr(_dcd.ep[ep_id], 2*sizeof(ep_cmd_sts_t)); _dcd.ep[ep_id][0].is_iso = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS); // Enable EP interrupt dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->INTEN |= TU_BIT(ep_id); return true; } void dcd_edpt_close_all (uint8_t rhport) { (void) rhport; // TODO implement dcd_edpt_close_all() } static void prepare_setup_packet(uint8_t rhport) { if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL ) { _dcd.ep[0][1].buffer_fs.offset = get_buf_offset(_dcd.setup_packet);; }else { _dcd.ep[0][1].buffer_hs.offset = get_buf_offset(_dcd.setup_packet);; } } static void prepare_ep_xfer(uint8_t rhport, uint8_t ep_id, uint16_t buf_offset, uint16_t total_bytes) { uint16_t nbytes; if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL ) { // TODO ISO FullSpeed can have up to 1023 bytes nbytes = tu_min16(total_bytes, NBYTES_CBI_FULLSPEED_MAX); _dcd.ep[ep_id][0].buffer_fs.offset = buf_offset; _dcd.ep[ep_id][0].buffer_fs.nbytes = nbytes; }else { nbytes = tu_min16(total_bytes, NBYTES_CBI_HIGHSPEED_MAX); _dcd.ep[ep_id][0].buffer_hs.offset = buf_offset; _dcd.ep[ep_id][0].buffer_hs.nbytes = nbytes; } _dcd.dma[ep_id].nbytes = nbytes; _dcd.ep[ep_id][0].active = 1; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { (void) rhport; uint8_t const ep_id = ep_addr2id(ep_addr); tu_memclr(&_dcd.dma[ep_id], sizeof(xfer_dma_t)); _dcd.dma[ep_id].total_bytes = total_bytes; prepare_ep_xfer(rhport, ep_id, get_buf_offset(buffer), total_bytes); return true; } //--------------------------------------------------------------------+ // IRQ //--------------------------------------------------------------------+ static void bus_reset(uint8_t rhport) { tu_memclr(&_dcd, sizeof(dcd_data_t)); // disable all non-control endpoints on bus reset for(uint8_t ep_id = 2; ep_id < 2*MAX_EP_PAIRS; ep_id++) { _dcd.ep[ep_id][0].disable = _dcd.ep[ep_id][1].disable = 1; } prepare_setup_packet(rhport); dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; dcd_reg->EPINUSE = 0; dcd_reg->EPBUFCFG = 0; dcd_reg->EPSKIP = 0xFFFFFFFF; dcd_reg->INTSTAT = dcd_reg->INTSTAT; // clear all pending interrupt dcd_reg->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; // clear setup received interrupt dcd_reg->INTEN = INT_DEVICE_STATUS_MASK | TU_BIT(0) | TU_BIT(1); // enable device status & control endpoints } static void process_xfer_isr(uint8_t rhport, uint32_t int_status) { uint8_t const max_ep = 2*_dcd_controller[rhport].ep_pairs; for(uint8_t ep_id = 0; ep_id < max_ep; ep_id++ ) { if ( tu_bit_test(int_status, ep_id) ) { ep_cmd_sts_t * ep_cs = &_dcd.ep[ep_id][0]; xfer_dma_t* xfer_dma = &_dcd.dma[ep_id]; if ( ep_id == 0 || ep_id == 1) { // For control endpoint, we need to manually clear Active bit ep_cs->active = 0; } uint16_t buf_offset; uint16_t buf_nbytes; if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL) { buf_offset = ep_cs->buffer_fs.offset; buf_nbytes = ep_cs->buffer_fs.nbytes; }else { buf_offset = ep_cs->buffer_hs.offset; buf_nbytes = ep_cs->buffer_hs.nbytes; } xfer_dma->xferred_bytes += xfer_dma->nbytes - buf_nbytes; if ( (buf_nbytes == 0) && (xfer_dma->total_bytes > xfer_dma->xferred_bytes) ) { // There is more data to transfer // buff_offset has been already increased by hw to correct value for next transfer prepare_ep_xfer(rhport, ep_id, buf_offset, xfer_dma->total_bytes - xfer_dma->xferred_bytes); } else { // for detecting ZLP xfer_dma->total_bytes = xfer_dma->xferred_bytes; uint8_t const ep_addr = tu_edpt_addr(ep_id / 2, ep_id & 0x01); // TODO no way determine if the transfer is failed or not dcd_event_xfer_complete(rhport, ep_addr, xfer_dma->xferred_bytes, XFER_RESULT_SUCCESS, true); } } } } void dcd_int_handler(uint8_t rhport) { dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs; uint32_t const cmd_stat = dcd_reg->DEVCMDSTAT; uint32_t int_status = dcd_reg->INTSTAT & dcd_reg->INTEN; dcd_reg->INTSTAT = int_status; // Acknowledge handled interrupt if (int_status == 0) return; //------------- Device Status -------------// if ( int_status & INT_DEVICE_STATUS_MASK ) { dcd_reg->DEVCMDSTAT |= CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK; if ( cmd_stat & CMDSTAT_RESET_CHANGE_MASK) // bus reset { bus_reset(rhport); tusb_speed_t speed = TUSB_SPEED_FULL; if (_dcd_controller[rhport].max_speed == TUSB_SPEED_HIGH) { // 0 : reserved, 1 : full, 2 : high, 3: super if ( 2 == ((cmd_stat >> CMDSTAT_SPEED_SHIFT) & 0x3UL) ) { speed= TUSB_SPEED_HIGH; } } dcd_event_bus_reset(rhport, speed, true); } if (cmd_stat & CMDSTAT_CONNECT_CHANGE_MASK) { // device disconnect if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK) { // debouncing as this can be set when device is powering dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true); } } // TODO support suspend & resume if (cmd_stat & CMDSTAT_SUSPEND_CHANGE_MASK) { if (cmd_stat & CMDSTAT_DEVICE_SUSPEND_MASK) { // suspend signal, bus idle for more than 3ms // Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration. if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK) { dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } } } // else // { // resume signal // dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); // } // } } // Setup Receive if ( tu_bit_test(int_status, 0) && (cmd_stat & CMDSTAT_SETUP_RECEIVED_MASK) ) { // Follow UM flowchart to clear Active & Stall on both Control IN/OUT endpoints _dcd.ep[0][0].active = _dcd.ep[1][0].active = 0; _dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 0; dcd_reg->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; dcd_event_setup_received(rhport, _dcd.setup_packet, true); // keep waiting for next setup prepare_setup_packet(rhport); // clear bit0 int_status = tu_bit_clear(int_status, 0); } // Endpoint transfer complete interrupt process_xfer_isr(rhport, int_status); } #endif