/* * The MIT License (MIT) * * Copyright (c) 2018, hathach (tinyusb.org) * Copyright (c) 2020, Koji Kitayama * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "../board.h" #include "fsl_device_registers.h" #include "fsl_gpio.h" #include "fsl_port.h" #include "fsl_clock.h" #include "fsl_lpsci.h" #include "clock_config.h" //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB0_IRQHandler(void) { #if CFG_TUH_ENABLED tuh_int_handler(0); #endif #if CFG_TUD_ENABLED tud_int_handler(0); #endif } //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ // LED #define LED_PINMUX IOMUXC_GPIO_AD_B0_09_GPIO1_IO09 #define LED_PORT GPIOB #define LED_PIN_CLOCK kCLOCK_PortB #define LED_PIN_PORT PORTB #define LED_PIN 19U #define LED_PIN_FUNCTION kPORT_MuxAsGpio #define LED_STATE_ON 0 // Button #define BUTTON_PORT GPIOC #define BUTTON_PIN_CLOCK kCLOCK_PortC #define BUTTON_PIN_PORT PORTC #define BUTTON_PIN 9U #define BUTTON_PIN_FUNCTION kPORT_MuxAsGpio #define BUTTON_STATE_ACTIVE 0 // UART #define UART_PORT UART0 #define UART_PIN_CLOCK kCLOCK_PortA #define UART_PIN_PORT PORTA #define UART_PIN_RX 1u #define UART_PIN_TX 2u #define UART_PIN_FUNCTION kPORT_MuxAlt2 #define SOPT5_UART0RXSRC_UART_RX 0x00u /*!< UART0 receive data source select: UART0_RX pin */ #define SOPT5_UART0TXSRC_UART_TX 0x00u /*!< UART0 transmit data source select: UART0_TX pin */ const uint8_t dcd_data[] = { 0x00 }; void board_init(void) { BOARD_BootClockRUN(); SystemCoreClockUpdate(); #if CFG_TUSB_OS == OPT_OS_NONE // 1ms tick timer SysTick_Config(SystemCoreClock / 1000); #elif CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY ); #endif // LED CLOCK_EnableClock(LED_PIN_CLOCK); PORT_SetPinMux(LED_PIN_PORT, LED_PIN, LED_PIN_FUNCTION); gpio_pin_config_t led_config = { kGPIO_DigitalOutput, 0 }; GPIO_PinInit(LED_PORT, LED_PIN, &led_config); board_led_write(false); #if defined(BUTTON_PORT) && defined(BUTTON_PIN) // Button CLOCK_EnableClock(BUTTON_PIN_CLOCK); port_pin_config_t button_port = { .pullSelect = kPORT_PullUp, .mux = BUTTON_PIN_FUNCTION, }; PORT_SetPinConfig(BUTTON_PIN_PORT, BUTTON_PIN, &button_port); gpio_pin_config_t button_config = { kGPIO_DigitalInput, 0 }; GPIO_PinInit(BUTTON_PORT, BUTTON_PIN, &button_config); #endif // UART CLOCK_EnableClock(UART_PIN_CLOCK); PORT_SetPinMux(UART_PIN_PORT, UART_PIN_RX, UART_PIN_FUNCTION); PORT_SetPinMux(UART_PIN_PORT, UART_PIN_TX, UART_PIN_FUNCTION); SIM->SOPT5 = ((SIM->SOPT5 & (~(SIM_SOPT5_UART0TXSRC_MASK | SIM_SOPT5_UART0RXSRC_MASK))) | SIM_SOPT5_UART0TXSRC(SOPT5_UART0TXSRC_UART_TX) | SIM_SOPT5_UART0RXSRC(SOPT5_UART0RXSRC_UART_RX) ); lpsci_config_t uart_config; CLOCK_SetLpsci0Clock(1); LPSCI_GetDefaultConfig(&uart_config); uart_config.baudRate_Bps = CFG_BOARD_UART_BAUDRATE; uart_config.enableTx = true; uart_config.enableRx = true; LPSCI_Init(UART_PORT, &uart_config, CLOCK_GetPllFllSelClkFreq()); // USB CLOCK_EnableUsbfs0Clock(kCLOCK_UsbSrcPll0, CLOCK_GetFreq(kCLOCK_PllFllSelClk)); } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { GPIO_WritePinOutput(LED_PORT, LED_PIN, state ? LED_STATE_ON : (1-LED_STATE_ON)); } uint32_t board_button_read(void) { #if defined(BUTTON_PORT) && defined(BUTTON_PIN) return BUTTON_STATE_ACTIVE == GPIO_ReadPinInput(BUTTON_PORT, BUTTON_PIN); #endif return 0; } int board_uart_read(uint8_t* buf, int len) { LPSCI_ReadBlocking(UART_PORT, buf, len); return len; } int board_uart_write(void const * buf, int len) { LPSCI_WriteBlocking(UART_PORT, (uint8_t const*) buf, len); return len; } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif