/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ /* This example current worked and tested with following controller * - Sony DualShock 4 [CUH-ZCT2x] VID = 0x054c, PID = 0x09cc */ #include #include #include #include "bsp/board.h" #include "tusb.h" // English #define LANGUAGE_ID 0x0409 //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF PROTYPES //--------------------------------------------------------------------+ void led_blinking_task(void); static void print_utf16(uint16_t *temp_buf, size_t buf_len); void print_device_descriptor(tuh_xfer_t* xfer); void parse_config_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg); tusb_desc_device_t desc_device; /*------------- MAIN -------------*/ int main(void) { board_init(); printf("TinyUSB Host HID Controller Example\r\n"); tusb_init(); while (1) { // tinyusb host task tuh_task(); led_blinking_task(); } return 0; } /*------------- TinyUSB Callbacks -------------*/ // Invoked when device is mounted (configured) void tuh_mount_cb (uint8_t daddr) { printf("Device attached, address = %d\r\n", daddr); // Get Device Descriptor sync API // TODO: invoking control trannsfer now has issue with mounting hub with multiple devices attached, fix later tuh_descriptor_get_device(daddr, &desc_device, 18, print_device_descriptor, 0); } /// Invoked when device is unmounted (bus reset/unplugged) void tuh_umount_cb(uint8_t daddr) { printf("Device removed, address = %d\r\n", daddr); } //--------------------------------------------------------------------+ // Device Descriptor //--------------------------------------------------------------------+ void print_device_descriptor(tuh_xfer_t* xfer) { if ( XFER_RESULT_SUCCESS != xfer->result ) { printf("Failed to get device descriptor\r\n"); return; } uint8_t const daddr = xfer->daddr; printf("Device %u: ID %04x:%04x\r\n", daddr, desc_device.idVendor, desc_device.idProduct); printf("Device Descriptor:\r\n"); printf(" bLength %u\r\n" , desc_device.bLength); printf(" bDescriptorType %u\r\n" , desc_device.bDescriptorType); printf(" bcdUSB %04x\r\n" , desc_device.bcdUSB); printf(" bDeviceClass %u\r\n" , desc_device.bDeviceClass); printf(" bDeviceSubClass %u\r\n" , desc_device.bDeviceSubClass); printf(" bDeviceProtocol %u\r\n" , desc_device.bDeviceProtocol); printf(" bMaxPacketSize0 %u\r\n" , desc_device.bMaxPacketSize0); printf(" idVendor 0x%04x\r\n" , desc_device.idVendor); printf(" idProduct 0x%04x\r\n" , desc_device.idProduct); printf(" bcdDevice %04x\r\n" , desc_device.bcdDevice); // Get String descriptor using Sync API uint16_t temp_buf[128]; printf(" iManufacturer %u " , desc_device.iManufacturer); if (XFER_RESULT_SUCCESS == tuh_descriptor_get_manufacturer_string_sync(daddr, LANGUAGE_ID, temp_buf, sizeof(temp_buf)) ) { print_utf16(temp_buf, TU_ARRAY_SIZE(temp_buf)); } printf("\r\n"); printf(" iProduct %u " , desc_device.iProduct); if (XFER_RESULT_SUCCESS == tuh_descriptor_get_product_string_sync(daddr, LANGUAGE_ID, temp_buf, sizeof(temp_buf))) { print_utf16(temp_buf, TU_ARRAY_SIZE(temp_buf)); } printf("\r\n"); printf(" iSerialNumber %u " , desc_device.iSerialNumber); if (XFER_RESULT_SUCCESS == tuh_descriptor_get_serial_string_sync(daddr, LANGUAGE_ID, temp_buf, sizeof(temp_buf))) { print_utf16(temp_buf, TU_ARRAY_SIZE(temp_buf)); } printf("\r\n"); printf(" bNumConfigurations %u\r\n" , desc_device.bNumConfigurations); // Get configuration descriptor with sync API if (XFER_RESULT_SUCCESS == tuh_descriptor_get_configuration_sync(daddr, 0, temp_buf, sizeof(temp_buf)) ) { parse_config_descriptor(daddr, (tusb_desc_configuration_t*) temp_buf); } } //--------------------------------------------------------------------+ // Configuration Descriptor //--------------------------------------------------------------------+ // count total length of an interface uint16_t count_interface_total_len(tusb_desc_interface_t const* desc_itf, uint8_t itf_count, uint16_t max_len); void open_hid_interface(uint8_t dev_addr, tusb_desc_interface_t const *desc_itf, uint16_t max_len) { // len = interface + hid + n*endpoints uint16_t const drv_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) + desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t); // corrupted descriptor if (max_len < drv_len) return; uint8_t const *p_desc = (uint8_t const *) desc_itf; // HID descriptor p_desc = tu_desc_next(p_desc); // Endpoint descriptor tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc; for(int i = 0; i < desc_itf->bNumEndpoints; i++) { if (TUSB_DESC_ENDPOINT != desc_ep->bDescriptorType) return; if(tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) { //usbh_edpt_open(rhport, dev_addr, desc_ep); } } } // simple configuration parser to open and listen to HID Endpoint IN void parse_config_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) { uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + tu_le16toh(desc_cfg->wTotalLength); uint8_t const* p_desc = tu_desc_next(desc_cfg); // parse each interfaces while( p_desc < desc_end ) { uint8_t assoc_itf_count = 1; // Class will always starts with Interface Association (if any) and then Interface descriptor if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) { tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc; assoc_itf_count = desc_iad->bInterfaceCount; p_desc = tu_desc_next(p_desc); // next to Interface } // must be interface from now if( TUSB_DESC_INTERFACE != tu_desc_type(p_desc) ) return; tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc; uint16_t const drv_len = count_interface_total_len(desc_itf, assoc_itf_count, desc_end-p_desc); // probably corrupted descriptor if(drv_len < sizeof(tusb_desc_interface_t)) return; // only open and listen to HID endpoint IN if (desc_itf->bInterfaceClass == TUSB_CLASS_HID) { open_hid_interface(dev_addr, desc_itf, drv_len); } // next Interface or IAD descriptor p_desc += drv_len; } } uint16_t count_interface_total_len(tusb_desc_interface_t const* desc_itf, uint8_t itf_count, uint16_t max_len) { uint8_t const* p_desc = (uint8_t const*) desc_itf; uint16_t len = 0; while (itf_count--) { // Next on interface desc len += tu_desc_len(desc_itf); p_desc = tu_desc_next(p_desc); while (len < max_len) { // return on IAD regardless of itf count if ( tu_desc_type(p_desc) == TUSB_DESC_INTERFACE_ASSOCIATION ) return len; if ( (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE) && ((tusb_desc_interface_t const*) p_desc)->bAlternateSetting == 0 ) { break; } len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); } } return len; } //--------------------------------------------------------------------+ // Blinking Task //--------------------------------------------------------------------+ void led_blinking_task(void) { const uint32_t interval_ms = 1000; static uint32_t start_ms = 0; static bool led_state = false; // Blink every interval ms if ( board_millis() - start_ms < interval_ms) return; // not enough time start_ms += interval_ms; board_led_write(led_state); led_state = 1 - led_state; // toggle } //--------------------------------------------------------------------+ // Helper //--------------------------------------------------------------------+ static void _convert_utf16le_to_utf8(const uint16_t *utf16, size_t utf16_len, uint8_t *utf8, size_t utf8_len) { // TODO: Check for runover. (void)utf8_len; // Get the UTF-16 length out of the data itself. for (size_t i = 0; i < utf16_len; i++) { uint16_t chr = utf16[i]; if (chr < 0x80) { *utf8++ = chr & 0xff; } else if (chr < 0x800) { *utf8++ = (uint8_t)(0xC0 | (chr >> 6 & 0x1F)); *utf8++ = (uint8_t)(0x80 | (chr >> 0 & 0x3F)); } else { // TODO: Verify surrogate. *utf8++ = (uint8_t)(0xE0 | (chr >> 12 & 0x0F)); *utf8++ = (uint8_t)(0x80 | (chr >> 6 & 0x3F)); *utf8++ = (uint8_t)(0x80 | (chr >> 0 & 0x3F)); } // TODO: Handle UTF-16 code points that take two entries. } } // Count how many bytes a utf-16-le encoded string will take in utf-8. static int _count_utf8_bytes(const uint16_t *buf, size_t len) { size_t total_bytes = 0; for (size_t i = 0; i < len; i++) { uint16_t chr = buf[i]; if (chr < 0x80) { total_bytes += 1; } else if (chr < 0x800) { total_bytes += 2; } else { total_bytes += 3; } // TODO: Handle UTF-16 code points that take two entries. } return total_bytes; } static void print_utf16(uint16_t *temp_buf, size_t buf_len) { size_t utf16_len = ((temp_buf[0] & 0xff) - 2) / sizeof(uint16_t); size_t utf8_len = _count_utf8_bytes(temp_buf + 1, utf16_len); _convert_utf16le_to_utf8(temp_buf + 1, utf16_len, (uint8_t *) temp_buf, sizeof(uint16_t) * buf_len); ((uint8_t*) temp_buf)[utf8_len] = '\0'; printf((char*)temp_buf); }