/**************************************************************************/ /*! @file ohci.c @author hathach (tinyusb.org) @section LICENSE Software License Agreement (BSD License) Copyright (c) 2013, hathach (tinyusb.org) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This file is part of the tinyusb stack. */ /**************************************************************************/ #include #if TUSB_OPT_HOST_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC40XX) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "osal/osal.h" #include "../hcd.h" #include "../usbh_hcd.h" #include "ohci.h" // TODO remove #include "chip.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ #define OHCI_REG ((ohci_registers_t *) LPC_USB_BASE) enum { OHCI_CONTROL_FUNCSTATE_RESET = 0, OHCI_CONTROL_FUNCSTATE_RESUME, OHCI_CONTROL_FUNCSTATE_OPERATIONAL, OHCI_CONTROL_FUNCSTATE_SUSPEND }; enum { OHCI_CONTROL_CONTROL_BULK_RATIO = 3, ///< This specifies the service ratio between Control and Bulk EDs. 0 = 1:1, 3 = 4:1 OHCI_CONTROL_LIST_PERIODIC_ENABLE_MASK = TU_BIT(2), OHCI_CONTROL_LIST_ISOCHRONOUS_ENABLE_MASK = TU_BIT(3), OHCI_CONTROL_LIST_CONTROL_ENABLE_MASK = TU_BIT(4), OHCI_CONTROL_LIST_BULK_ENABLE_MASK = TU_BIT(5), }; enum { OHCI_FMINTERVAL_FI = 0x2EDF, // 7.3.1 nominal (reset) value OHCI_FMINTERVAL_FSMPS = (6*(OHCI_FMINTERVAL_FI-210)) / 7, // 5.4 calculated based on maximum overhead + bit stuffing }; enum { OHCI_PERIODIC_START = 0x3E67 }; enum { OHCI_INT_SCHEDULING_OVERUN_MASK = TU_BIT(0), OHCI_INT_WRITEBACK_DONEHEAD_MASK = TU_BIT(1), OHCI_INT_SOF_MASK = TU_BIT(2), OHCI_INT_RESUME_DETECTED_MASK = TU_BIT(3), OHCI_INT_UNRECOVERABLE_ERROR_MASK = TU_BIT(4), OHCI_INT_FRAME_OVERFLOW_MASK = TU_BIT(5), OHCI_INT_RHPORT_STATUS_CHANGE_MASK = TU_BIT(6), OHCI_INT_OWNERSHIP_CHANGE_MASK = TU_BIT(30), OHCI_INT_MASTER_ENABLE_MASK = TU_BIT(31), }; enum { OHCI_RHPORT_CURRENT_CONNECT_STATUS_MASK = TU_BIT(0), OHCI_RHPORT_PORT_ENABLE_STATUS_MASK = TU_BIT(1), OHCI_RHPORT_PORT_SUSPEND_STATUS_MASK = TU_BIT(2), OHCI_RHPORT_PORT_OVER_CURRENT_INDICATOR_MASK = TU_BIT(3), OHCI_RHPORT_PORT_RESET_STATUS_MASK = TU_BIT(4), ///< write '1' to reset port OHCI_RHPORT_PORT_POWER_STATUS_MASK = TU_BIT(8), OHCI_RHPORT_LOW_SPEED_DEVICE_ATTACHED_MASK = TU_BIT(9), OHCI_RHPORT_CONNECT_STATUS_CHANGE_MASK = TU_BIT(16), OHCI_RHPORT_PORT_ENABLE_CHANGE_MASK = TU_BIT(17), OHCI_RHPORT_PORT_SUSPEND_CHANGE_MASK = TU_BIT(18), OHCI_RHPORT_OVER_CURRENT_CHANGE_MASK = TU_BIT(19), OHCI_RHPORT_PORT_RESET_CHANGE_MASK = TU_BIT(20), OHCI_RHPORT_ALL_CHANGE_MASK = OHCI_RHPORT_CONNECT_STATUS_CHANGE_MASK | OHCI_RHPORT_PORT_ENABLE_CHANGE_MASK | OHCI_RHPORT_PORT_SUSPEND_CHANGE_MASK | OHCI_RHPORT_OVER_CURRENT_CHANGE_MASK | OHCI_RHPORT_PORT_RESET_CHANGE_MASK }; enum { OHCI_CCODE_NO_ERROR = 0, OHCI_CCODE_CRC = 1, OHCI_CCODE_BIT_STUFFING = 2, OHCI_CCODE_DATA_TOGGLE_MISMATCH = 3, OHCI_CCODE_STALL = 4, OHCI_CCODE_DEVICE_NOT_RESPONDING = 5, OHCI_CCODE_PID_CHECK_FAILURE = 6, OHCI_CCODE_UNEXPECTED_PID = 7, OHCI_CCODE_DATA_OVERRUN = 8, OHCI_CCODE_DATA_UNDERRUN = 9, OHCI_CCODE_BUFFER_OVERRUN = 12, OHCI_CCODE_BUFFER_UNDERRUN = 13, OHCI_CCODE_NOT_ACCESSED = 14, }; enum { OHCI_INT_ON_COMPLETE_YES = 0, OHCI_INT_ON_COMPLETE_NO = TU_BIN8(111) }; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ CFG_TUSB_MEM_SECTION ATTR_ALIGNED(256) static ohci_data_t ohci_data; static ohci_ed_t * const p_ed_head[] = { [TUSB_XFER_CONTROL] = &ohci_data.control[0].ed, [TUSB_XFER_BULK ] = &ohci_data.bulk_head_ed, [TUSB_XFER_INTERRUPT] = &ohci_data.period_head_ed, [TUSB_XFER_ISOCHRONOUS] = NULL // TODO Isochronous }; static void ed_list_insert(ohci_ed_t * p_pre, ohci_ed_t * p_ed); static void ed_list_remove_by_addr(ohci_ed_t * p_head, uint8_t dev_addr); //--------------------------------------------------------------------+ // USBH-HCD API //--------------------------------------------------------------------+ // Initialization according to 5.1.1.4 bool hcd_init(void) { //------------- Data Structure init -------------// tu_memclr(&ohci_data, sizeof(ohci_data_t)); for(uint8_t i=0; i<32; i++) { // assign all interrupt pointes to period head ed ohci_data.hcca.interrupt_table[i] = (uint32_t) &ohci_data.period_head_ed; } ohci_data.control[0].ed.skip = 1; ohci_data.bulk_head_ed.skip = 1; ohci_data.period_head_ed.skip = 1; // reset controller OHCI_REG->command_status_bit.controller_reset = 1; while( OHCI_REG->command_status_bit.controller_reset ) {} // should not take longer than 10 us //------------- init ohci registers -------------// OHCI_REG->control_head_ed = (uint32_t) &ohci_data.control[0].ed; OHCI_REG->bulk_head_ed = (uint32_t) &ohci_data.bulk_head_ed; OHCI_REG->hcca = (uint32_t) &ohci_data.hcca; OHCI_REG->interrupt_disable = OHCI_REG->interrupt_enable; // disable all interrupts OHCI_REG->interrupt_status = OHCI_REG->interrupt_status; // clear current set bits OHCI_REG->interrupt_enable = OHCI_INT_WRITEBACK_DONEHEAD_MASK | OHCI_INT_RESUME_DETECTED_MASK | OHCI_INT_UNRECOVERABLE_ERROR_MASK | /*OHCI_INT_FRAME_OVERFLOW_MASK |*/ OHCI_INT_RHPORT_STATUS_CHANGE_MASK | OHCI_INT_MASTER_ENABLE_MASK; OHCI_REG->control |= OHCI_CONTROL_CONTROL_BULK_RATIO | OHCI_CONTROL_LIST_CONTROL_ENABLE_MASK | OHCI_CONTROL_LIST_BULK_ENABLE_MASK | OHCI_CONTROL_LIST_PERIODIC_ENABLE_MASK; // TODO Isochronous OHCI_REG->frame_interval = (OHCI_FMINTERVAL_FSMPS << 16) | OHCI_FMINTERVAL_FI; OHCI_REG->periodic_start = (OHCI_FMINTERVAL_FI * 9) / 10; // Periodic start is 90% of frame interval OHCI_REG->control_bit.hc_functional_state = OHCI_CONTROL_FUNCSTATE_OPERATIONAL; // make HC's state to operational state TODO use this to suspend (save power) OHCI_REG->rh_status_bit.local_power_status_change = 1; // set global power for ports return true; } //--------------------------------------------------------------------+ // PORT API //--------------------------------------------------------------------+ void hcd_port_reset(uint8_t hostid) { (void) hostid; OHCI_REG->rhport_status[0] = OHCI_RHPORT_PORT_RESET_STATUS_MASK; } bool hcd_port_connect_status(uint8_t hostid) { (void) hostid; return OHCI_REG->rhport_status_bit[0].current_connect_status; } tusb_speed_t hcd_port_speed_get(uint8_t hostid) { (void) hostid; return OHCI_REG->rhport_status_bit[0].low_speed_device_attached ? TUSB_SPEED_LOW : TUSB_SPEED_FULL; } // endpoints are tied to an address, which only reclaim after a long delay when enumerating // thus there is no need to make sure ED is not in HC's cahed as it will not for sure void hcd_device_close(uint8_t rhport, uint8_t dev_addr) { // TODO OHCI (void) rhport; // addr0 serves as static head --> only set skip bit if ( dev_addr == 0 ) { ohci_data.control[0].ed.skip = 1; }else { // remove control ed_list_remove_by_addr( p_ed_head[TUSB_XFER_CONTROL], dev_addr); // remove bulk ed_list_remove_by_addr(p_ed_head[TUSB_XFER_BULK], dev_addr); // remove interrupt ed_list_remove_by_addr(p_ed_head[TUSB_XFER_INTERRUPT], dev_addr); // TODO remove ISO } } //--------------------------------------------------------------------+ // Controller API //--------------------------------------------------------------------+ //--------------------------------------------------------------------+ // CONTROL PIPE API //--------------------------------------------------------------------+ static inline tusb_xfer_type_t ed_get_xfer_type(ohci_ed_t const * const p_ed) { return (p_ed->ep_number == 0 ) ? TUSB_XFER_CONTROL : (p_ed->is_iso ) ? TUSB_XFER_ISOCHRONOUS : (p_ed->is_interrupt_xfer ) ? TUSB_XFER_INTERRUPT : TUSB_XFER_BULK; } static void ed_init(ohci_ed_t *p_ed, uint8_t dev_addr, uint16_t max_packet_size, uint8_t endpoint_addr, uint8_t xfer_type, uint8_t interval) { (void) interval; // address 0 is used as async head, which always on the list --> cannot be cleared if (dev_addr != 0) { tu_memclr(p_ed, sizeof(ohci_ed_t)); } p_ed->dev_addr = dev_addr; p_ed->ep_number = endpoint_addr & 0x0F; p_ed->pid = (xfer_type == TUSB_XFER_CONTROL) ? OHCI_PID_SETUP : ( (endpoint_addr & TUSB_DIR_IN_MASK) ? OHCI_PID_IN : OHCI_PID_OUT ); p_ed->speed = _usbh_devices[dev_addr].speed; p_ed->is_iso = (xfer_type == TUSB_XFER_ISOCHRONOUS) ? 1 : 0; p_ed->max_packet_size = max_packet_size; p_ed->used = 1; p_ed->is_interrupt_xfer = (xfer_type == TUSB_XFER_INTERRUPT ? 1 : 0); } static void gtd_init(ohci_gtd_t* p_td, void* data_ptr, uint16_t total_bytes) { tu_memclr(p_td, sizeof(ohci_gtd_t)); p_td->used = 1; p_td->expected_bytes = total_bytes; p_td->buffer_rounding = 1; // less than queued length is not a error p_td->delay_interrupt = OHCI_INT_ON_COMPLETE_NO; p_td->condition_code = OHCI_CCODE_NOT_ACCESSED; p_td->current_buffer_pointer = data_ptr; p_td->buffer_end = total_bytes ? (((uint8_t*) data_ptr) + total_bytes-1) : NULL; } bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8]) { (void) rhport; ohci_ed_t* p_ed = &ohci_data.control[dev_addr].ed; ohci_gtd_t *p_setup = &ohci_data.control[dev_addr].gtd; gtd_init(p_setup, (void*) setup_packet, 8); p_setup->index = dev_addr; p_setup->pid = OHCI_PID_SETUP; p_setup->data_toggle = TU_BIN8(10); // DATA0 p_setup->delay_interrupt = OHCI_INT_ON_COMPLETE_YES; //------------- Attach TDs list to Control Endpoint -------------// p_ed->td_head.address = (uint32_t) p_setup; OHCI_REG->command_status_bit.control_list_filled = 1; return true; } bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); // FIXME control only for now if ( epnum == 0 ) { ohci_ed_t* const p_ed = &ohci_data.control[dev_addr].ed; ohci_gtd_t *p_data = &ohci_data.control[dev_addr].gtd; gtd_init(p_data, buffer, buflen); p_data->index = dev_addr; p_data->pid = dir ? OHCI_PID_IN : OHCI_PID_OUT; p_data->data_toggle = TU_BIN8(11); // DATA1 p_data->delay_interrupt = OHCI_INT_ON_COMPLETE_YES; p_ed->td_head.address = (uint32_t) p_data; OHCI_REG->command_status_bit.control_list_filled = 1; } return true; } //--------------------------------------------------------------------+ // BULK/INT/ISO PIPE API //--------------------------------------------------------------------+ static inline ohci_ed_t * ed_from_addr(uint8_t dev_addr, uint8_t ep_addr) { if ( tu_edpt_number(ep_addr) == 0 ) return &ohci_data.control[dev_addr].ed; ohci_ed_t* ed_pool = ohci_data.ed_pool; for(uint32_t i=0; inext = p_pre->next; p_pre->next = (uint32_t) p_ed; } static void ed_list_remove_by_addr(ohci_ed_t * p_head, uint8_t dev_addr) { ohci_ed_t* p_prev = p_head; while( p_prev->next ) { ohci_ed_t* ed = (ohci_ed_t*) p_prev->next; if (ed->dev_addr == dev_addr) { // unlink ed p_prev->next = ed->next; // point the removed ED's next pointer to list head to make sure HC can always safely move away from this ED ed->next = (uint32_t) p_head; ed->used = 0; } // check next valid since we could remove it if (p_prev->next) p_prev = (ohci_ed_t*) p_prev->next; } } bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc) { (void) rhport; // TODO iso support TU_ASSERT(ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); //------------- Prepare Queue Head -------------// ohci_ed_t * p_ed; if ( ep_desc->bEndpointAddress == 0 ) { p_ed = &ohci_data.control[dev_addr].ed; }else { p_ed = ed_find_free(); } TU_ASSERT(p_ed); ed_init( p_ed, dev_addr, ep_desc->wMaxPacketSize.size, ep_desc->bEndpointAddress, ep_desc->bmAttributes.xfer, ep_desc->bInterval ); // control of dev0 is used as static async head if ( dev_addr == 0 ) { p_ed->skip = 0; // only need to clear skip bit return true; } ed_list_insert( p_ed_head[ep_desc->bmAttributes.xfer], p_ed ); return true; } static ohci_gtd_t * gtd_find_free(void) { for(uint8_t i=0; i < HCD_MAX_XFER; i++) { if ( !ohci_data.gtd_pool[i].used ) return &ohci_data.gtd_pool[i]; } return NULL; } static void td_insert_to_ed(ohci_ed_t* p_ed, ohci_gtd_t * p_gtd) { // tail is always NULL if ( tu_align16(p_ed->td_head.address) == 0 ) { // TD queue is empty --> head = TD p_ed->td_head.address |= (uint32_t) p_gtd; } else { // TODO currently only support queue up to 2 TD each endpoint at a time ((ohci_gtd_t*) tu_align16(p_ed->td_head.address))->next = (uint32_t) p_gtd; } } static bool pipe_queue_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t buffer[], uint16_t total_bytes, bool int_on_complete) { ohci_ed_t* const p_ed = ed_from_addr(dev_addr, ep_addr); // not support ISO yet TU_VERIFY ( !p_ed->is_iso ); ohci_gtd_t * const p_gtd = gtd_find_free(); TU_ASSERT(p_gtd); // not enough gtd gtd_init(p_gtd, buffer, total_bytes); p_gtd->index = p_ed-ohci_data.ed_pool; if ( int_on_complete ) p_gtd->delay_interrupt = OHCI_INT_ON_COMPLETE_YES; td_insert_to_ed(p_ed, p_gtd); return true; } bool hcd_pipe_queue_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t buffer[], uint16_t total_bytes) { return pipe_queue_xfer(dev_addr, ep_addr, buffer, total_bytes, false); } bool hcd_pipe_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t buffer[], uint16_t total_bytes, bool int_on_complete) { (void) int_on_complete; TU_ASSERT( pipe_queue_xfer(dev_addr, ep_addr, buffer, total_bytes, true) ); tusb_xfer_type_t xfer_type = ed_get_xfer_type( ed_from_addr(dev_addr, ep_addr) ); if (TUSB_XFER_BULK == xfer_type) OHCI_REG->command_status_bit.bulk_list_filled = 1; return true; } bool hcd_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) { ohci_ed_t const * const p_ed = ed_from_addr(dev_addr, ep_addr); return tu_align16(p_ed->td_head.address) != tu_align16(p_ed->td_tail); } bool hcd_edpt_stalled(uint8_t dev_addr, uint8_t ep_addr) { ohci_ed_t const * const p_ed = ed_from_addr(dev_addr, ep_addr); return p_ed->td_head.halted && p_ed->is_stalled; } bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr) { ohci_ed_t * const p_ed = ed_from_addr(dev_addr, ep_addr); p_ed->is_stalled = 0; p_ed->td_tail &= 0x0Ful; // set tail pointer back to NULL p_ed->td_head.toggle = 0; // reset data toggle p_ed->td_head.halted = 0; if ( TUSB_XFER_BULK == ed_get_xfer_type(p_ed) ) OHCI_REG->command_status_bit.bulk_list_filled = 1; return true; } //--------------------------------------------------------------------+ // OHCI Interrupt Handler //--------------------------------------------------------------------+ static ohci_td_item_t* list_reverse(ohci_td_item_t* td_head) { ohci_td_item_t* td_reverse_head = NULL; while(td_head != NULL) { uint32_t next = td_head->next; // make current's item become reverse's first item td_head->next = (uint32_t) td_reverse_head; td_reverse_head = td_head; td_head = (ohci_td_item_t*) next; // advance to next item } return td_reverse_head; } static inline bool gtd_is_control(ohci_gtd_t const * const p_qtd) { return ((uint32_t) p_qtd) < ((uint32_t) ohci_data.gtd_pool); // check ohci_data_t for memory layout } static inline ohci_ed_t* gtd_get_ed(ohci_gtd_t const * const p_qtd) { if ( gtd_is_control(p_qtd) ) { return &ohci_data.control[p_qtd->index].ed; }else { return &ohci_data.ed_pool[p_qtd->index]; } } static inline uint32_t gtd_xfer_byte_left(uint32_t buffer_end, uint32_t current_buffer) { // 5.2.9 OHCI sample code return (tu_align4k(buffer_end ^ current_buffer) ? 0x1000 : 0) + tu_offset4k(buffer_end) - tu_offset4k(current_buffer) + 1; } static void done_queue_isr(uint8_t hostid) { (void) hostid; // done head is written in reversed order of completion --> need to reverse the done queue first ohci_td_item_t* td_head = list_reverse ( (ohci_td_item_t*) tu_align16(ohci_data.hcca.done_head) ); while( td_head != NULL ) { // TODO check if td_head is iso td //------------- Non ISO transfer -------------// ohci_gtd_t * const p_qtd = (ohci_gtd_t *) td_head; xfer_result_t const event = (p_qtd->condition_code == OHCI_CCODE_NO_ERROR) ? XFER_RESULT_SUCCESS : (p_qtd->condition_code == OHCI_CCODE_STALL) ? XFER_RESULT_STALLED : XFER_RESULT_FAILED; p_qtd->used = 0; // free TD if ( (p_qtd->delay_interrupt == OHCI_INT_ON_COMPLETE_YES) || (event != XFER_RESULT_SUCCESS) ) { ohci_ed_t * const p_ed = gtd_get_ed(p_qtd); uint32_t const xferred_bytes = p_qtd->expected_bytes - gtd_xfer_byte_left((uint32_t) p_qtd->buffer_end, (uint32_t) p_qtd->current_buffer_pointer); // NOTE Assuming the current list is BULK and there is no other EDs in the list has queued TDs. // When there is a error resulting this ED is halted, and this EP still has other queued TD // --> the Bulk list only has this halted EP queueing TDs (remaining) // --> Bulk list will be considered as not empty by HC !!! while there is no attempt transaction on this list // --> HC will not process Control list (due to service ratio when Bulk list not empty) // To walk-around this, the halted ED will have TailP = HeadP (empty list condition), when clearing halt // the TailP must be set back to NULL for processing remaining TDs if ((event != XFER_RESULT_SUCCESS)) { p_ed->td_tail &= 0x0Ful; p_ed->td_tail |= tu_align16(p_ed->td_head.address); // mark halted EP as empty queue if ( event == XFER_RESULT_STALLED ) p_ed->is_stalled = 1; } hcd_event_xfer_complete(p_ed->dev_addr, tu_edpt_addr(p_ed->ep_number, p_ed->pid == OHCI_PID_IN), event, xferred_bytes); } td_head = (ohci_td_item_t*) td_head->next; } } void hal_hcd_isr(uint8_t hostid) { uint32_t const int_en = OHCI_REG->interrupt_enable; uint32_t const int_status = OHCI_REG->interrupt_status & int_en; if (int_status == 0) return; //------------- RootHub status -------------// if ( int_status & OHCI_INT_RHPORT_STATUS_CHANGE_MASK ) { uint32_t const rhport_status = OHCI_REG->rhport_status[0] & OHCI_RHPORT_ALL_CHANGE_MASK; // TODO dual port is not yet supported if ( rhport_status & OHCI_RHPORT_CONNECT_STATUS_CHANGE_MASK ) { // TODO check if remote wake-up if ( OHCI_REG->rhport_status_bit[0].current_connect_status ) { // TODO reset port immediately, without this controller will got 2-3 (debouncing connection status change) OHCI_REG->rhport_status[0] = OHCI_RHPORT_PORT_RESET_STATUS_MASK; hcd_event_device_attach(0); }else { hcd_event_device_remove(0); } } if ( rhport_status & OHCI_RHPORT_PORT_SUSPEND_CHANGE_MASK) { } OHCI_REG->rhport_status[0] = rhport_status; // acknowledge all interrupt } //------------- Transfer Complete -------------// if ( int_status & OHCI_INT_WRITEBACK_DONEHEAD_MASK) { done_queue_isr(hostid); } OHCI_REG->interrupt_status = int_status; // Acknowledge handled interrupt } //--------------------------------------------------------------------+ // HELPER //--------------------------------------------------------------------+ #endif