/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_MSC) #include "common/tusb_common.h" #include "msc_device.h" #include "device/usbd_pvt.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ enum { MSC_STAGE_CMD = 0, MSC_STAGE_DATA, MSC_STAGE_STATUS, MSC_STAGE_STATUS_SENT }; typedef struct { // TODO optimize alignment CFG_TUSB_MEM_ALIGN msc_cbw_t cbw; CFG_TUSB_MEM_ALIGN msc_csw_t csw; uint8_t itf_num; uint8_t ep_in; uint8_t ep_out; // Bulk Only Transfer (BOT) Protocol uint8_t stage; uint32_t total_len; uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage // Sense Response Data uint8_t sense_key; uint8_t add_sense_code; uint8_t add_sense_qualifier; }mscd_interface_t; CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static mscd_interface_t _mscd_itf; CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _mscd_buf[CFG_TUD_MSC_BUFSIZE]; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc); static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc); static inline uint32_t rdwr10_get_lba(uint8_t const command[]) { // read10 & write10 has the same format scsi_write10_t* p_rdwr10 = (scsi_write10_t*) command; // copy first to prevent mis-aligned access uint32_t lba; memcpy(&lba, &p_rdwr10->lba, 4); // lba is in Big Endian format return tu_ntohl(lba); } static inline uint16_t rdwr10_get_blockcount(uint8_t const command[]) { // read10 & write10 has the same format scsi_write10_t* p_rdwr10 = (scsi_write10_t*) command; // copy first to prevent mis-aligned access uint16_t block_count; memcpy(&block_count, &p_rdwr10->block_count, 2); return tu_ntohs(block_count); } //--------------------------------------------------------------------+ // Debug //--------------------------------------------------------------------+ #if CFG_TUSB_DEBUG >= 2 static lookup_entry_t const _msc_scsi_cmd_lookup[] = { { .key = SCSI_CMD_TEST_UNIT_READY , .data = "Test Unit Ready" }, { .key = SCSI_CMD_INQUIRY , .data = "Inquiry" }, { .key = SCSI_CMD_MODE_SELECT_6 , .data = "Mode_Select 6" }, { .key = SCSI_CMD_MODE_SENSE_6 , .data = "Mode_Sense 6" }, { .key = SCSI_CMD_START_STOP_UNIT , .data = "Start Stop Unit" }, { .key = SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL , .data = "Prevent Allow Medium Removal" }, { .key = SCSI_CMD_READ_CAPACITY_10 , .data = "Read Capacity10" }, { .key = SCSI_CMD_REQUEST_SENSE , .data = "Request Sense" }, { .key = SCSI_CMD_READ_FORMAT_CAPACITY , .data = "Read Format Capacity" }, { .key = SCSI_CMD_READ_10 , .data = "Read10" }, { .key = SCSI_CMD_WRITE_10 , .data = "Write10" } }; static lookup_table_t const _msc_scsi_cmd_table = { .count = TU_ARRAY_SIZE(_msc_scsi_cmd_lookup), .items = _msc_scsi_cmd_lookup }; #endif //--------------------------------------------------------------------+ // APPLICATION API //--------------------------------------------------------------------+ bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, uint8_t add_sense_qualifier) { (void) lun; _mscd_itf.sense_key = sense_key; _mscd_itf.add_sense_code = add_sense_code; _mscd_itf.add_sense_qualifier = add_sense_qualifier; return true; } //--------------------------------------------------------------------+ // USBD Driver API //--------------------------------------------------------------------+ void mscd_init(void) { tu_memclr(&_mscd_itf, sizeof(mscd_interface_t)); } void mscd_reset(uint8_t rhport) { (void) rhport; tu_memclr(&_mscd_itf, sizeof(mscd_interface_t)); } uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len) { // only support SCSI's BOT protocol TU_VERIFY(TUSB_CLASS_MSC == itf_desc->bInterfaceClass && MSC_SUBCLASS_SCSI == itf_desc->bInterfaceSubClass && MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol, 0); // msc driver length is fixed enum { _MSC_DRIVER_LEN = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) }; // Max length mus be at least 1 interface + 2 endpoints TU_ASSERT(max_len >= _MSC_DRIVER_LEN, 0); mscd_interface_t * p_msc = &_mscd_itf; p_msc->itf_num = itf_desc->bInterfaceNumber; // Open endpoint pair TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0 ); // Prepare for Command Block Wrapper if ( !usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) ) { TU_LOG1_FAILED(); TU_BREAKPOINT(); } return _MSC_DRIVER_LEN; } // Handle class control request // return false to stall control endpoint (e.g unsupported request) bool mscd_control_request(uint8_t rhport, tusb_control_request_t const * p_request) { // Handle class request only TU_VERIFY(p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS); switch ( p_request->bRequest ) { case MSC_REQ_RESET: // TODO: Actually reset interface. tud_control_status(rhport, p_request); break; case MSC_REQ_GET_MAX_LUN: { uint8_t maxlun = 1; if (tud_msc_get_maxlun_cb) maxlun = tud_msc_get_maxlun_cb(); TU_VERIFY(maxlun); // MAX LUN is minus 1 by specs maxlun--; tud_control_xfer(rhport, p_request, &maxlun, 1); } break; default: return false; // stall unsupported request } return true; } // Invoked when class request DATA stage is finished. // return false to stall control endpoint (e.g Host send non-sense DATA) bool mscd_control_complete(uint8_t rhport, tusb_control_request_t const * request) { (void) rhport; (void) request; // nothing to do return true; } // return response's length (copied to buffer). Negative if it is not an built-in command or indicate Failed status (CSW) // In case of a failed status, sense key must be set for reason of failure int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize) { (void) bufsize; // TODO refractor later int32_t resplen; switch ( scsi_cmd[0] ) { case SCSI_CMD_TEST_UNIT_READY: resplen = 0; if ( !tud_msc_test_unit_ready_cb(lun) ) { // Failed status response resplen = - 1; // If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00); } break; case SCSI_CMD_START_STOP_UNIT: resplen = 0; if (tud_msc_start_stop_cb) { scsi_start_stop_unit_t const * start_stop = (scsi_start_stop_unit_t const *) scsi_cmd; if ( !tud_msc_start_stop_cb(lun, start_stop->power_condition, start_stop->start, start_stop->load_eject) ) { // Failed status response resplen = - 1; // If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00); } } break; case SCSI_CMD_READ_CAPACITY_10: { uint32_t block_count; uint32_t block_size; uint16_t block_size_u16; tud_msc_capacity_cb(lun, &block_count, &block_size_u16); block_size = (uint32_t) block_size_u16; // Invalid block size/count from callback, possibly unit is not ready // stall this request, set sense key to NOT READY if (block_count == 0 || block_size == 0) { resplen = -1; // If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00); }else { scsi_read_capacity10_resp_t read_capa10; read_capa10.last_lba = tu_htonl(block_count-1); read_capa10.block_size = tu_htonl(block_size); resplen = sizeof(read_capa10); memcpy(buffer, &read_capa10, resplen); } } break; case SCSI_CMD_READ_FORMAT_CAPACITY: { scsi_read_format_capacity_data_t read_fmt_capa = { .list_length = 8, .block_num = 0, .descriptor_type = 2, // formatted media .block_size_u16 = 0 }; uint32_t block_count; uint16_t block_size; tud_msc_capacity_cb(lun, &block_count, &block_size); // Invalid block size/count from callback, possibly unit is not ready // stall this request, set sense key to NOT READY if (block_count == 0 || block_size == 0) { resplen = -1; // If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00); }else { read_fmt_capa.block_num = tu_htonl(block_count); read_fmt_capa.block_size_u16 = tu_htons(block_size); resplen = sizeof(read_fmt_capa); memcpy(buffer, &read_fmt_capa, resplen); } } break; case SCSI_CMD_INQUIRY: { scsi_inquiry_resp_t inquiry_rsp = { .is_removable = 1, .version = 2, .response_data_format = 2, }; // vendor_id, product_id, product_rev is space padded string memset(inquiry_rsp.vendor_id , ' ', sizeof(inquiry_rsp.vendor_id)); memset(inquiry_rsp.product_id , ' ', sizeof(inquiry_rsp.product_id)); memset(inquiry_rsp.product_rev, ' ', sizeof(inquiry_rsp.product_rev)); tud_msc_inquiry_cb(lun, inquiry_rsp.vendor_id, inquiry_rsp.product_id, inquiry_rsp.product_rev); resplen = sizeof(inquiry_rsp); memcpy(buffer, &inquiry_rsp, resplen); } break; case SCSI_CMD_MODE_SENSE_6: { scsi_mode_sense6_resp_t mode_resp = { .data_len = 3, .medium_type = 0, .write_protected = false, .reserved = 0, .block_descriptor_len = 0 // no block descriptor are included }; bool writable = true; if (tud_msc_is_writable_cb) { writable = tud_msc_is_writable_cb(lun); } mode_resp.write_protected = !writable; resplen = sizeof(mode_resp); memcpy(buffer, &mode_resp, resplen); } break; case SCSI_CMD_REQUEST_SENSE: { scsi_sense_fixed_resp_t sense_rsp = { .response_code = 0x70, .valid = 1 }; sense_rsp.add_sense_len = sizeof(scsi_sense_fixed_resp_t) - 8; sense_rsp.sense_key = _mscd_itf.sense_key; sense_rsp.add_sense_code = _mscd_itf.add_sense_code; sense_rsp.add_sense_qualifier = _mscd_itf.add_sense_qualifier; resplen = sizeof(sense_rsp); memcpy(buffer, &sense_rsp, resplen); // Clear sense data after copy tud_msc_set_sense(lun, 0, 0, 0); } break; default: resplen = -1; break; } return resplen; } bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes) { mscd_interface_t* p_msc = &_mscd_itf; msc_cbw_t const * p_cbw = &p_msc->cbw; msc_csw_t * p_csw = &p_msc->csw; switch (p_msc->stage) { case MSC_STAGE_CMD: //------------- new CBW received -------------// // Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it if(ep_addr != p_msc->ep_out) return true; TU_ASSERT( event == XFER_RESULT_SUCCESS && xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE ); TU_LOG2(" SCSI Command: %s\r\n", lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0])); // TU_LOG2_MEM(p_cbw, xferred_bytes, 2); p_csw->signature = MSC_CSW_SIGNATURE; p_csw->tag = p_cbw->tag; p_csw->data_residue = 0; /*------------- Parse command and prepare DATA -------------*/ p_msc->stage = MSC_STAGE_DATA; p_msc->total_len = p_cbw->total_bytes; p_msc->xferred_len = 0; if (SCSI_CMD_READ_10 == p_cbw->command[0]) { proc_read10_cmd(rhport, p_msc); } else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) { proc_write10_cmd(rhport, p_msc); } else { // For other SCSI commands // 1. OUT : queue transfer (invoke app callback after done) // 2. IN & Zero: Process if is built-in, else Invoke app callback. Skip DATA if zero length if ( (p_cbw->total_bytes > 0 ) && !tu_bit_test(p_cbw->dir, 7) ) { // queue transfer TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, p_msc->total_len) ); }else { int32_t resplen; // First process if it is a built-in commands resplen = proc_builtin_scsi(p_cbw->lun, p_cbw->command, _mscd_buf, sizeof(_mscd_buf)); // Not built-in, invoke user callback if ( (resplen < 0) && (p_msc->sense_key == 0) ) { resplen = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->total_len); } if ( resplen < 0 ) { p_msc->total_len = 0; p_csw->status = MSC_CSW_STATUS_FAILED; p_msc->stage = MSC_STAGE_STATUS; // failed but senskey is not set: default to Illegal Request if ( p_msc->sense_key == 0 ) tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Stall bulk In if needed if (p_cbw->total_bytes) usbd_edpt_stall(rhport, p_msc->ep_in); } else { p_msc->total_len = (uint32_t) resplen; p_csw->status = MSC_CSW_STATUS_PASSED; if (p_msc->total_len) { TU_ASSERT( p_cbw->total_bytes >= p_msc->total_len ); // cannot return more than host expect TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, p_msc->total_len) ); }else { p_msc->stage = MSC_STAGE_STATUS; } } } } break; case MSC_STAGE_DATA: TU_LOG2(" SCSI Data\r\n"); //TU_LOG2_MEM(_mscd_buf, xferred_bytes, 2); // OUT transfer, invoke callback if needed if ( !tu_bit_test(p_cbw->dir, 7) ) { if ( SCSI_CMD_WRITE_10 != p_cbw->command[0] ) { int32_t cb_result = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->total_len); if ( cb_result < 0 ) { p_csw->status = MSC_CSW_STATUS_FAILED; tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation }else { p_csw->status = MSC_CSW_STATUS_PASSED; } } else { uint16_t const block_sz = p_cbw->total_bytes / rdwr10_get_blockcount(p_cbw->command); // Adjust lba with transferred bytes uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); // Application can consume smaller bytes int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, xferred_bytes); if ( nbytes < 0 ) { // negative means error -> skip to status phase, status in CSW set to failed p_csw->data_residue = p_cbw->total_bytes - p_msc->xferred_len; p_csw->status = MSC_CSW_STATUS_FAILED; p_msc->stage = MSC_STAGE_STATUS; tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation break; }else { // Application consume less than what we got (including zero) if ( nbytes < (int32_t) xferred_bytes ) { if ( nbytes > 0 ) { p_msc->xferred_len += nbytes; memmove(_mscd_buf, _mscd_buf+nbytes, xferred_bytes-nbytes); } // simulate an transfer complete with adjusted parameters --> this driver callback will fired again dcd_event_xfer_complete(rhport, p_msc->ep_out, xferred_bytes-nbytes, XFER_RESULT_SUCCESS, false); return true; // skip the rest } else { // Application consume all bytes in our buffer. Nothing to do, process with normal flow } } } } // Accumulate data so far p_msc->xferred_len += xferred_bytes; if ( p_msc->xferred_len >= p_msc->total_len ) { // Data Stage is complete p_msc->stage = MSC_STAGE_STATUS; } else { // READ10 & WRITE10 Can be executed with large bulk of data e.g write 8K bytes (several flash write) // We break it into multiple smaller command whose data size is up to CFG_TUD_MSC_BUFSIZE if (SCSI_CMD_READ_10 == p_cbw->command[0]) { proc_read10_cmd(rhport, p_msc); } else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) { proc_write10_cmd(rhport, p_msc); }else { // No other command take more than one transfer yet -> unlikely error TU_BREAKPOINT(); } } break; case MSC_STAGE_STATUS: // processed immediately after this switch, supposedly to be empty break; case MSC_STAGE_STATUS_SENT: // Wait for the Status phase to complete if( (ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t)) ) { TU_LOG2(" SCSI Status: %u\r\n", p_csw->status); // TU_LOG2_MEM(p_csw, xferred_bytes, 2); // Move to default CMD stage p_msc->stage = MSC_STAGE_CMD; // Queue for the next CBW TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) ); } break; default : break; } if ( p_msc->stage == MSC_STAGE_STATUS ) { // Either endpoints is stalled, need to wait until it is cleared by host if ( usbd_edpt_stalled(rhport, p_msc->ep_in) || usbd_edpt_stalled(rhport, p_msc->ep_out) ) { // simulate an transfer complete with adjusted parameters --> this driver callback will fired again // and response with status phase after halted endpoints are cleared. // note: use ep_out to prevent confusing with STATUS complete dcd_event_xfer_complete(rhport, p_msc->ep_out, 0, XFER_RESULT_SUCCESS, false); } else { // Invoke complete callback if defined // Note: There is racing issue with samd51 + qspi flash testing with arduino // if complete_cb() is invoked after queuing the status. switch(p_cbw->command[0]) { case SCSI_CMD_READ_10: if ( tud_msc_read10_complete_cb ) tud_msc_read10_complete_cb(p_cbw->lun); break; case SCSI_CMD_WRITE_10: if ( tud_msc_write10_complete_cb ) tud_msc_write10_complete_cb(p_cbw->lun); break; default: if ( tud_msc_scsi_complete_cb ) tud_msc_scsi_complete_cb(p_cbw->lun, p_cbw->command); break; } // Move to Status Sent stage p_msc->stage = MSC_STAGE_STATUS_SENT; // Send SCSI Status TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in , (uint8_t*) &p_msc->csw, sizeof(msc_csw_t))); } } return true; } /*------------------------------------------------------------------*/ /* SCSI Command Process *------------------------------------------------------------------*/ static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc) { msc_cbw_t const * p_cbw = &p_msc->cbw; msc_csw_t * p_csw = &p_msc->csw; uint16_t const block_cnt = rdwr10_get_blockcount(p_cbw->command); TU_ASSERT(block_cnt, ); // prevent div by zero uint16_t const block_sz = p_cbw->total_bytes / block_cnt; TU_ASSERT(block_sz, ); // prevent div by zero // Adjust lba with transferred bytes uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); // remaining bytes capped at class buffer int32_t nbytes = (int32_t) tu_min32(sizeof(_mscd_buf), p_cbw->total_bytes-p_msc->xferred_len); // Application can consume smaller bytes nbytes = tud_msc_read10_cb(p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, (uint32_t) nbytes); if ( nbytes < 0 ) { // negative means error -> pipe is stalled & status in CSW set to failed p_csw->data_residue = p_cbw->total_bytes - p_msc->xferred_len; p_csw->status = MSC_CSW_STATUS_FAILED; tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation usbd_edpt_stall(rhport, p_msc->ep_in); } else if ( nbytes == 0 ) { // zero means not ready -> simulate an transfer complete so that this driver callback will fired again dcd_event_xfer_complete(rhport, p_msc->ep_in, 0, XFER_RESULT_SUCCESS, false); } else { TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, nbytes), ); } } static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc) { msc_cbw_t const * p_cbw = &p_msc->cbw; bool writable = true; if (tud_msc_is_writable_cb) { writable = tud_msc_is_writable_cb(p_cbw->lun); } if (!writable) { msc_csw_t* p_csw = &p_msc->csw; p_csw->data_residue = p_cbw->total_bytes; p_csw->status = MSC_CSW_STATUS_FAILED; tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_DATA_PROTECT, 0x27, 0x00); // Sense = Write protected usbd_edpt_stall(rhport, p_msc->ep_out); return; } // remaining bytes capped at class buffer int32_t nbytes = (int32_t) tu_min32(sizeof(_mscd_buf), p_cbw->total_bytes-p_msc->xferred_len); // Write10 callback will be called later when usb transfer complete TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, nbytes), ); } #endif