/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** STM32F1 example * @file main.c * @author King Kévin * @date 2016 */ /* standard libraries */ #include // standard integer types #include // boolean type #include // string utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // flash utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #include "usart.h" // USART utilities #include "usb_cdcacm.h" // USB CDC ACM utilities #include "rtc_ds1307.h" // DS1307 RTC utilities #include "led_tm1637.h" // TM1637 7-segment controller utilities #include "led_max7219.h" // MAX7219 7-segment controller utilities #define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */ /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ /** user input command */ static char command[32] = {0}; /** user input command index */ uint8_t command_i = 0; size_t putc(char c) { size_t length = 0; // number of characters printed static char newline = 0; // to remember on which character we sent the newline if (0==c) { length = 0; // don't print string termination character } else if ('\r' == c || '\n' == c) { // send CR+LF newline for most carriage return and line feed combination if (0==newline || c==newline) { // send newline only if not already send (and only once on \r\n or \n\r) usart_putchar_nonblocking('\r'); // send CR over USART cdcacm_putchar('\r'); // send CR over USB usart_putchar_nonblocking('\n'); // send LF over USART cdcacm_putchar('\n'); // send LF over USB length += 2; // remember we printed 2 characters newline = c; // remember on which character we sent the newline } else { length = 0; // the \r or \n of \n\r or \r\n has already been printed } } else { usart_putchar_nonblocking(c); // send byte over USART cdcacm_putchar(c); // send byte over USB newline = 0; // clear new line length++; // remember we printed 1 character } return length; // return number of characters printed } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // split command const char* delimiter = " "; char* word = strtok(str,delimiter); if (!word) { goto error; } // parse command if (0==strcmp(word,"help")) { printf("available commands:\n"); printf("led [on|off|toggle]\n"); printf("time [HH:MM:SS]\n"); printf("date [YYYY-MM-DD]\n"); } else if (0==strcmp(word,"led")) { word = strtok(NULL,delimiter); if (!word) { goto error; } else if (0==strcmp(word,"on")) { led_on(); // switch LED on printf("LED switched on\n"); // notify user } else if (0==strcmp(word,"off")) { led_off(); // switch LED off printf("LED switched off\n"); // notify user } else if (0==strcmp(word,"toggle")) { led_toggle(); // toggle LED printf("LED toggled\n"); // notify user } else { goto error; } } else if (0==strcmp(word,"time")) { word = strtok(NULL,delimiter); if (!word) { printf("current time: %02u:%02u:%02u\n", rtc_ds1307_read_hours(), rtc_ds1307_read_minutes(), rtc_ds1307_read_seconds()); // get and print time from external RTC } else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect goto error; } else { if (!rtc_ds1307_write_hours((word[0]-'0')*10+(word[1]-'0')*1)) { printf("setting hours failed\n"); } else if (!rtc_ds1307_write_minutes((word[3]-'0')*10+(word[4]-'0')*1)) { printf("setting minutes failed\n"); } else if (!rtc_ds1307_write_seconds((word[6]-'0')*10+(word[7]-'0')*1)) { printf("setting seconds failed\n"); } else { rtc_ds1307_oscillator_enable(); // be sure the oscillation is enabled printf("time set\n"); } } } else if (0==strcmp(word,"date")) { word = strtok(NULL,delimiter); if (!word) { printf("current date: 20%02u-%02u-%02u\n", rtc_ds1307_read_year(), rtc_ds1307_read_month(), rtc_ds1307_read_date()); } else if (strlen(word)!=10 || word[0]!='2' || word[1]!='0' || word[2]<'0' || word[2]>'9' || word[3]<'0' || word[3]>'9' || word[5]<'0' || word[5]>'1' || word[6]<'0' || word[6]>'9' || word[8]<'0' || word[8]>'3' || word[9]<'0' || word[9]>'9') { goto error; } else { if (!rtc_ds1307_write_year((word[2]-'0')*10+(word[3]-'0')*1)) { printf("setting year failed\n"); } else if (!rtc_ds1307_write_month((word[5]-'0')*10+(word[6]-'0')*1)) { printf("setting month failed\n"); } else if (!rtc_ds1307_write_date((word[8]-'0')*10+(word[9]-'0')*1)) { printf("setting day failed\n"); } else { printf("date set\n"); } } } else { goto error; } return; // command successfully processed error: printf("command not recognized. enter help to list commands\n"); return; } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board usart_setup(); // setup USART for user communication cdcacm_setup(); // setup USB ACM (serial) for user communication printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message #if !(DEBUG) // show watchdog information printf("watchdog set to (%2u.%2us)\n",WATCHDOG_PERIOD/1000, (WATCHDOG_PERIOD/10)%100); if (FLASH_OBR&FLASH_OBR_OPTERR) { printf("option bytes not set in flash: software wachtdog used (not started at reset)\n"); } else if (FLASH_OBR&FLASH_OBR_WDG_SW) { printf("software wachtdog used (not started at reset)\n"); } else { printf("hardware wachtdog used (started at reset)\n"); } #endif // setup internal RTC printf("setup internal RTC: "); rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt printf("OK\n"); // display uptime uint32_t ticks_time = rtc_get_counter_val(); // get time from internal RTC (since first start/power up) printf("uptime: %u.%02u:%02u:%02u\n", ticks_time/(60*60*24), (ticks_time/(60*60))%24, (ticks_time%(60*60))/60, (ticks_time%60)); // display uptime // setup external RTC printf("setup external RTC: "); rtc_ds1307_setup(); // setup external RTC module printf("OK\n"); // verify is external RTC is running if (rtc_ds1307_oscillator_disabled()) { printf("/!\\ RTC oscillator is disabled: the battery may be empty\n"); rtc_ds1307_oscillator_enable(); // enable oscillator again } // display date uint8_t* rtc_ds1307_time = rtc_ds1307_read_time(); // get time/date from external RTC if (rtc_ds1307_time==NULL) { printf("could not get time from DS1307\n"); } else { printf("current date: 20%02u-%02u-%02u %02u:%02u:%02u\n", rtc_ds1307_time[6], rtc_ds1307_time[5], rtc_ds1307_time[4], rtc_ds1307_time[2], rtc_ds1307_time[1], rtc_ds1307_time[0]); } // setup TM1637 and MAX7219 7-segments displays printf("setup 7-segment displays: "); led_tm1637_setup(); // setup TM1637 led_max7219_setup(); // setup MAX7219 if (!led_tm1637_time(88,88)) { // test TM1637 display printf("could not send time to TM1637\n"); } if (!led_tm1637_on()) { // switch on TM1637 display printf("could not switch on TM1637\n"); } led_max7219_intensity(15,8,0); // set brightness max and enable all digits on 1st display led_max7219_intensity(15,8,1); // set brightness max and enable all digits on 1st display led_max7219_test(true,0); // test 1st MAX7219 display led_max7219_test(true,1); // test 2nd MAX7219 display for (uint32_t i=0; i<5000000; i++) { // wait a bit to have the user check the display __asm__("nop"); } if (!led_tm1637_text(" ")) { // clear display printf("could not clear\n"); } if (!led_tm1637_off()) { // switch off display printf("could not switch off TM1637\n"); } led_max7219_test(false,0); // go back in normal operation led_max7219_test(false,1); // go back in normal operation led_max7219_off(0); // switch 1st display off led_max7219_off(1); // switch 2nd display off printf("OK\n"); led_max7219_number(rtc_ds1307_time[2]*1000000+rtc_ds1307_time[1]*10000+rtc_ds1307_time[0]*100, 0x54, 0); // display time on 1nd display led_max7219_number(20000000+rtc_ds1307_time[6]*10000+rtc_ds1307_time[5]*100+rtc_ds1307_time[4], 0x14, 1); // display date on 2nd display led_max7219_on(0); // switch 1st display on led_max7219_on(1); // switch 2nd display on // main loop printf("command input: ready\n"); bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag char c = '\0'; // to store received character bool char_flag = false; // a new character has been received while (true) { // infinite loop iwdg_reset(); // kick the dog while (usart_received) { // data received over UART action = true; // action has been performed led_toggle(); // toggle LED c = usart_getchar(); // store receive character char_flag = true; // notify character has been received } while (cdcacm_received) { // data received over USB action = true; // action has been performed led_toggle(); // toggle LED c = cdcacm_getchar(); // store receive character char_flag = true; // notify character has been received } while (char_flag) { // user data received char_flag = false; // reset flag action = true; // action has been performed putc(c); // echo receive character if (c=='\r' || c=='\n') { // end of command received if (command_i>0) { // there is a command to process command[command_i] = 0; // end string command_i = 0; // prepare for next command process_command(command); // process user command } } else { // user command input command[command_i] = c; // save command input if (command_i